Солнечные батареи для отопления частного дома

Солнечное отопление частного дома — что нужно знать?

Обновлено: 26 ноября 2021

  • Солнечное отопление
  • Устройство и принцип работы
  • Преимущества
  • Виды отопления
    • Открытые солнечные коллекторы
    • Трубчатые коллекторные разновидности
    • Плоские закрытые системы
  • Выбор солнечного коллектора и его монтаж
  • Схемы подключения к системе отопления
    • С водяным коллектором
    • С солнечной батареей
  • Советы по эксплуатации
  • Цена комплекта и где купить?

Солнечное отопление

Постоянный рост тарифов и ветхое состояние коммуникаций вынуждают владельцев частных домов активно искать альтернативные способы обогрева. Одним из мощных и неиссякаемых источников является Солнце, ежедневно поставляющее огромное количество киловатт бесплатной энергии. Необходимо установить соответствующее оборудование, и зависимость от поставщиков сетевых ресурсов останется в прошлом.

Солнечная энергия имеется всегда, хоть и зависит от погодных условий или времени суток. Для регионов, где климатические и погодные условия позволяют получать достаточное количество киловатт для обогрева, такой вариант становится оптимальным. Солнечное отопление предоставляет массу возможностей и преимуществ, о которых следует поговорить подробнее.

Устройство и принцип работы

Солнечное отопление частного дома — инновационная технология, о которой пока еще не все имеют четкое представление. Между тем, все возможности для установки и использования соответствующих комплексов имеются практически у любого домовладельца. Необходимость финансовых вложений существует только для приобретения аппаратуры или оборудования, все остальное он получит бесплатно.

Существует два варианта организации солнечного отопления:

  1. Солнечные батареи;
  2. Солнечные коллекторы.

Использование солнечных батарей — более затратный метод, требующий присутствия большого количества оборудования. Используются фотоэлектрические элементы, расположенные на открытой площадке под нужным углом для максимально перпендикулярного падения солнечных лучей. Они вырабатывают электрический ток, который накапливается в аккумуляторных батареях, преобразуется в переменный ток со стандартными параметрами, после чего направляется на отопительные приборы.

Отопление от солнечных батарей в частном доме дает массу дополнительных возможностей. Такой способ имеет значительное преимущество —электрический ток, который вырабатывают солнечные батареи, можно использовать не только на обогрев дома, но и на питание любых приборов, на освещение или иные надобности.

Солнечные батареи для дома для отопления, стоимость которых довольно высока, могут оказаться невыгодны с финансовой точки зрения.

Солнечные коллекторы действуют по другому принципу. Они не вырабатывают, а получают от Солнца тепловую энергию, которая нагревает теплоноситель в емкостях или трубках. В принципе, коллектором можно считать любую емкость с водой, выставленную на солнце, но имеются специальные конструкции, способные продемонстрировать наибольшую эффективность. Такой вариант системы значительно проще, дешевле и доступен для самостоятельного изготовления.

Полученное тепло сразу реализуется в повышении температуры теплоносителя, который аккумулируется в накопительной емкости, откуда распределяется по отопительным контурам дома. Оптимальным способом обогрева является использование низкотемпературных систем, таких как теплый пол. Они не нуждаются в сильном нагреве, что соответствует возможностям солнечных коллекторов. В ночное время расходуется теплоноситель, нагретый за день.

Для максимальной солнечных коллекторов эффективности необходимо качественно утеплять накопительную емкость.

Преимущества

Основное преимущество состоит в том, что Солнце — постоянный и неиссякаемый источник, стабильный и полностью предсказуемый. В отличие от ветрогенераторов, которые могут простаивать неделями, солнечная энергия подается в заранее известные временные интервалы. Единственным недостатком является возможность пасмурной или холодной погоды, когда эффективность работы батарей и коллекторов падает. Однако, современные конструкции позволяют получать минимальное количество даже в самых сложных условиях, поэтому при правильном расчете никакие неожиданности системе обогрева не угрожают.

Кроме того, нельзя забывать, что солнечная энергия достается совершенно бесплатно. Если при отоплении дома газовыми или электрическими котлами надо приобретать само оборудование и потом постоянно оплачивать энергию или топливо, то солнечная энергия не оплачивается, что значительно изменяет уровень рентабельности аппаратуры и всей системы в целом.

Однако, не следует забывать, что солнечное отопление частного дома, цена и трудозатраты на монтаж которого нередко становятся основной проблемой, выгодно только в регионах с подходящими климатическими и погодными условиями.

Дополнительным преимуществом является высокая ремонтопригодность системы и возможность наращивания ее производительности. В данном вопросе никаких ограничений нет — сколько установлено панелей или коллекторов, столько энергии и будет получено. Если установленный комплект оказался неспособен к эффективному обогреву дома, его всегда можно усилить добавлением нужного количества оборудования. Это удобно при необходимости перестроить или расширить дом, сделать пристройку и т.д. Необходимости покупать новую систему полностью это не возникает.

Виды отопления

Фотоэлектрические элементы не работают исключительно на обогрев, который является частным случаем их использования, тогда как солнечные коллекторы служат только источниками питания отопительных контуров. Поэтому рассмотрим именно коллекторы, обеспечивающие отопление на солнечных батареях, цена которого значительно ниже, чем у фотоэлектрических элементов.

Существует несколько конструкций солнечных коллекторов:

  • открытые;
  • трубчатые;
  • плоские коллекторы.

Эти конструкции обладают разными возможностями и применяются для решения задач, соответствующих их эффективности. Рассмотрим их внимательнее:

Открытые солнечные коллекторы

Открытые конструкции являются наиболее простыми и даже примитивными. Они представляют собой емкости, обычно черные узкие продолговатые пластиковые лотки, наполненные водой. Они ничем не накрыты, вода находится на открытом воздухе (отсюда и название).

Такие конструкции имеют массу недостатков:

  • возможность давать положительный эффект только при плюсовых температурах;
  • необходим относительно небольшой перепад температур в коллекторе и внешней среде;
  • долговечность таких установок низка — как правило, один сезон;
  • как следствие вышесказанному — крайне низкий КПД.

Для решения серьезных задач подобные установки использовать невозможно, поэтому они применяются для подогрева воды в открытых или передвижных бассейнах, летнем душе и т.п. однако, есть и достоинства — подобные устройства очень просты. Обогреватель от солнечной батареи легко может быть изготовлен самостоятельно, а в регионах с подходящими климатическими условиями его возможности заметно расширяются.

Трубчатые коллекторные разновидности

Трубчатые вакуумные коллекторы относятся к более серьезным устройствам, способным обогревать жилье или иные помещения. Они состоят из следующих элементов:

  • корпус, покрытый черной краской и имеющий форму плоского ящика;
  • распределитель (или, как его иногда называют, manifold, манифольд) — трубка с несколькими присоединительными патрубкам по бокам;
  • вакуумные трубки, изготовленные из стекла.

Эффективность устройства обеспечивает наличие вакуума, теплопроводность которого практически отсутствует и позволяет исключить потери.

Существует несколько видов трубчатых коллекторов, различающихся по конструкции распределителя и трубок:

  1. Коаксиальные трубки прямого нагрева. Подготовка теплоносителя происходит при непосредственном контакте с поглощающей поверхностью
  2. Система heat-pipe. Трубки соединяются с распределителем через специальные гнезда и отдают через них нагретый теплоноситель. Конструкция удобна из-за высокой ремонтопригодности.
  3. Система U-type. Трубки имеют двойную длину и согнуты пополам. Начало соединено с одним распределителем, а конец — с другим. Такая схема позволяет увеличить время контакта с солнечным теплом, за счет чего повышается эффективность нагрева.
  4. Перьевые системы. Представляют собой модификацию системы heat-pipe, накрытую прозрачной пластиной с вакуумом под ней. Дают повышенную эффективность, но имеют высокую цену и низкую ремонтопригодность.
Читайте также:
Что такое жидкие обои, как их правильно разводить и наносить?

Монтаж трубчатых коллекторов, как правило, производят на кровлю дома.

Плоские закрытые системы

Солнечное отопление дома с помощью плоских систем позволяет получить высокую эффективность при относительно низких затратах. Конструкция базируется на специальной утепленной металлической пластине с поглощающим покрытием, которая называется адсорбер. На пластину зигзагами напаяна трубка с теплоносителем. Лицевая сторона накрыта прозрачной крышкой, из-под которой выкачан воздух. Солнечный обогреватель такого типа способен работать даже при отрицательных температурах. Это позволяет обеспечивать отопление дома солнечными батареями зимой, отзывы пользователей позволяют делать достаточно оптимистичные прогнозы о будущем такого способа обогрева.

Существуют более простые виды плоских коллекторов, где не имеется вакуума. Они менее эффективны, но стоимость и ремонтопригодность значительно выше. Отопление на солнечных батареях плоского типа безвакуумной конструкции обойдется значительно дешевле, а возможность восстановления панелей увеличивает срок их службы.

Выбор солнечного коллектора и его монтаж

Перед домовладельцем, решившим создать солнечное отопление частного дома своими руками, встает задача выбрать наиболее подходящий тип коллектора. Этот вопрос достаточно сложен, но разобраться в нем необходимо.

Открытые коллекторы не подойдут из-за низких возможностей, поэтому о них нет смысла говорить. Обычно выбор производится между трубчатыми и плоскими видами. Первым и самым значимым критерием выбора обычно становится соотношение цены и качества изделий.

Такой подход оправдан, но нельзя не учитывать ремонтопригодность. Так, вакуумные трубки можно менять далеко не во всех видах коллекторов, что делает выбор рискованным. При выходе из строя одной из них у некоторых видов коллекторов придется менять всю панель, что потребует расходов. Вообще, все вакуумные устройства — довольно рискованное приобретение, так как любое механическое воздействие грозит потерей источника тепловой энергии.

Выбрав оптимальный вариант, приступают к монтажу. Для него надо выбрать подходящую площадку, расположенную неподалеку от дома. Это важно, поскольку транспортировка теплоносителя на большие расстояния потребует качественного утепления и установки циркуляционного насоса. Обычно коллекторы устанавливают на крышу, чтобы получить возможность циркуляции самотеком. Единственной проблемой становится расположение скатов относительно положения солнца на небе — иногда приходится устанавливать трекинг-систему для поворота панелей. Это дорого и требует использования гибких трубок, но эффект в результате получается значительно выше.

Схемы подключения к системе отопления

Солнечное отопление своими руками необходимо окончательно реализовать, подключив его к отопительной системе. Оптимальным способом станет использование теплого пола, температура теплоносителя для которого не превышает 55 градусов. Рассмотрим схемы подключения, обеспечивающие обогрев дома солнечной энергией:

С водяным коллектором

Водяные коллекторы непосредственно подключаются к отопительному контуру дома. Существует два варианта присоединения: летний и зимний.

Летний вариант, как правило, используется для подачи нагретой воды в душ или для иных надобностей, поскольку обогрев дома летом не нужен. Схема самая простая — коллектор устанавливается на открытой площадке, вода, нагреваясь, поднимается в накопительный бак, установленный уровнем выше. По мере разбора, емкость пустеет, поэтому в нее постоянно подается подпитка, поступающая в коллектор и получающая в нем тепловую энергию. Этот способ несложен и может быть без проблем реализован своими руками.

Зимний вариант сложнее. Коллектор, установленный на открытой площадке, подает нагретый теплоноситель (рекомендуется использовать антифриз) в змеевик теплообменника. Он представляет собой вертикально установленную емкость со змеевиком внутри. Возникает две петли — в одной циркулирует антифриз (по кругу коллектор-теплообменник), в другой циркулирует теплоноситель (из теплообменника в отопительный контур и обратно). Циркуляцию антифриза необходимо обеспечить с помощью циркуляционного насоса, иначе система работать не будет. Циркуляцию теплоносителя можно организовать как естественным способом, так и принудительно, с помощью насоса. Оптимальный вариант отопительного контура — система теплого пола, позволяющая получить максимальный эффект как в дневное, так и в ночное время суток.

С солнечной батареей

Отопление от солнца своими руками, созданное на базе солнечных батарей, осуществляется путем установки электрического нагревателя. В данном случае фотоэлектрические элементы лишь обеспечивают питание ТЭНов, установленных в электробойлере, не имея непосредственного отношения к отопительному контуру.

Система отопления и солнечные батареи со всем комплексом аппаратуры монтируются отдельно. Способ соединения выбирается произвольно, исходя из особенностей обеих систем. Подключение бойлера, насоса и прочих устройств выполняется обычным способом, никаких специфических требование не имеется.

Можно ли применить солнечные батареи для отопления дома

Полупроводниковые панели, преобразующие энергию солнца в электричество, обычно устанавливаются с одной целью – обеспечить работу домашних бытовых приборов. Настоящие энтузиасты на достигнутом не останавливаются и пытаются приспособить солнечные батареи для отопления дома. Предлагаем обсудить эту идею, рассмотреть возможные способы обогрева с помощью фотоэлектрических панелей. Рентабельность электростанций альтернативной энергетики и прочие финансовые вопросы разбирать нет смысла, это отдельная тема.

  • 1 Как работает солнечная электростанция
  • 2 Сколько нужно солнечных батарей для отопления дома
  • 3 Реальные способы обогрева
    • 3.1 Отопление кондиционерами
    • 3.2 Использование местных обогревателей
  • 4 Заключительный вывод

Как работает солнечная электростанция

Мы не собираемся отнимать ваше время и рассказывать, как полупроводниковые модули генерируют ток. Но если вы хотите организовать солнечное отопление частного дома, нужно представлять принцип работы фотоэлектрической станции и знать все нюансы, влияющие на ее мощность.

Солнечная энергетическая установка (СЭС) состоит из следующих элементов (показаны ниже на схеме):

  • одна либо несколько панелей, воспринимающих излучение солнца;
  • аккумуляторные батареи (АКБ), накапливающие произведенную электроэнергию;
  • контроллер следит за уровнем заряда, направляет ток в нужную цепь;
  • инвертор преобразует постоянное напряжение солнечных батарей в переменный ток 220 В.

Интересный момент. Цена модулей составляет не более 30% от стоимости полного комплекта оборудования. Остальные 70% – это аккумуляторы, инверторный блок и контроллер. Комплектующие подбираются под одно рабочее напряжение 12, 24 или 48 вольт.

Упрощенно поясним алгоритм работы системы:

  1. В течение светового дня батареи вырабатывают ток, проходящий через контроллер.
  2. Электронный блок оценивает уровень заряда АКБ, затем направляет энергию в нужную линию – на зарядку либо потребителям (к инвертору).
  3. Инверторный блок преобразует постоянный ток в переменный со стандартными параметрами – 220 В / 50 Гц.

Существует 2 типа контроллеров – ШИМ и MPPT. Разница между ними состоит в способе зарядки элементов электропитания и величине потерь напряжения. Блоки MPPT более современные и экономичные. Аккумуляторы применяются разные: свинцово-кислотные, гелевые и так далее.

Читайте также:
Фильтр для системы отопления: грязевик, магнитный фильтр отстойник для отопительной системы, устройство на фото и видео

В состав СЭС входят специальные АКБ, не боящиеся глубокого разряда

Если планируется использование нескольких модулей, то они соединяются между собой 3 способами:

  1. Параллельная схема подключения позволяет нарастить ток в цепи. «Минусовые» контакты всех батарей присоединяются к одной линии, «плюсовые» – к другой. Напряжение на выходе остается неизменным.
  2. Применение последовательной схемы дает возможность увеличить выходное напряжение. «Минусовая» клемма первой панели соединяется с «плюсом» второй и так далее.
  3. Комбинированный способ применяется, когда нужно изменить оба параметра – силу тока и напряжение. Несколько модулей соединяется последовательно, потом группа подключается к общей сети параллельно другим аналогичным группам.

Как выглядят солнечные панели для дома и сопутствующее оборудование, расскажет мастер-электромонтажник на видео:

Сколько нужно солнечных батарей для отопления дома

Казалось бы, все просто. На обогрев небольшого загородного коттеджа площадью 100 м² пойдет приблизительно 10 кВт = 10 000 Вт тепловой энергии. Это 100 панелей по 0.1 кВт или 34 больших модуля по 300 Вт. Столько батарей на крышу дома не поставишь, а о квартире и речи нет.

Справка. Размер 1 фотоэлектрического элемента мощностью 100 Вт, изготовленного по поликристаллической технологии, составляет около 1020 х 700 мм или 0.71 м². Аналогичная батарея на 300 Вт займет 1.68 м² (170 х 99 см).

Сразу оговоримся, полученный результат – неправильный, поскольку не учитывает особенности эксплуатации солнечных энергетических систем:

    Фотоэлектрический модуль выдает максимальную мощность, когда лучи падают под углом 90° к плоскости батареи. Если не сделать трекер – следящий механизм, поворачивающий панель вслед за движением солнца, потеряем около 40% энергии. С другой стороны, подобное устройство тоже расходует электричество.

Трекер поворачивает модули вслед за светилом, обеспечивая угол падения лучей 90°

  • Величина солнечного излучения на 1 м² – инсоляция – зависит от региона проживания, высоты над уровнем моря, затененности участка. Перечисленные факторы напрямую влияют на производительность батарей.
  • С течением времени полупроводниковое покрытие модулей деградирует, в результате теряется примерно 1% электрической мощности ежегодно.
  • Если фотоэлектрический слой перегревается солнцем, производительность панели тоже уменьшается.
  • Малая толика энергии теряется в сопутствующем оборудовании – инверторах, контроллерах, АКБ. Это банальный нагрев деталей – трансформаторов, микросхем и прочих элементов.
  • Когда рабочая поверхность загрязняется пылью либо засыпается снегом, возникают дополнительные потери.
  • Заметьте, для отопления солнцем зимой вырабатываемого электричества должно хватать на обогрев дома и зарядку аккумуляторов на ночь.
  • Вывод. Универсального расчета электрической мощности батарей, подходящего ко всем странам и регионам, не существует. Но озвученную выше цифру 10 кВт нужно удвоить (как минимум), чтобы получить пристойный результат на практике. Понадобится от 200 стоваттных панелей, занимающих площадь свыше 140 м².

    Есть надежный способ получить точные данные по инсоляции и рассчитать производительность солнечных батарей – обратиться в местную организацию, занимающуюся их монтажом. Либо самому изучать карту инсоляции района.

    На карте видно, что центральные регионы РФ получают довольно мало радиации солнца – в среднем 3–3.5 кВт на метр квадратный за день

    Предлагаем пойти другим путем – использовать опыт владельцев солнечных автономных электростанций, почитать их отзывы на тематических форумах. Отыщите там пользователей, проживающих в вашей местности, если хотите получить реальные цифры бесплатно. Приведем примеры:

    1. Автономная система солнечного электроснабжения, расположенная в Ленинградской области, РФ. Установлено 6 панелей по 0.22 кВт (всего 1.32 кВт), пиковая мощность в зимний безоблачный день – 1157 Вт. Тема обсуждается на известном русскоязычном форуме.
    2. г. Анапа, производительность батарей – 2.2 кВт, количество не указывается. За световой день электростанция генерирует порядка 9 кВт.
    3. г. Москва, мощность СЭС 2.64 кВт. За весь июнь установка выработала 304 кВт энергии.

    Примечание. Отзывы и другие полезные данные по эксплуатации СЭС вы найдете по этому адресу.

    Обратите внимание: нами учитывалась только солнечная энергия для отопления, подогрев воды и прочие хозяйственные нужды в расчет не принимались. Как рассчитать число батарей на практике, смотрите в видеосюжете:

    Реальные способы обогрева

    Как вы поняли их вышесказанного, реализовать полноценное электрическое отопление дома солнечными батареями довольно сложно (и дорого). Далеко не каждый хозяин решится купить и установить панели на площади 100–150 м², дабы прогреть небольшой дом или дачу. Значит, схема электрокотел + водяная система + отопительные радиаторы отпадает.

    Но идею обогрева солнечными модулями все же нельзя назвать утопией. Перечислим варианты, реализованные домовладельцами на практике:

    • панели плюс инверторные кондиционеры с коэффициентом эффективности COP 3.5–4;
    • подключение батарей напрямую к электрическим обогревателям без инвертора;
    • строительство полноценной СЭС, продажа электроэнергии государству, вырученные средства идут на оплату традиционного отопления.

    Дополнение. Применение панелей в качестве дополнительных источников энергии для основного отопления обсуждать нет смысла – это очевидное решение.

    Начнем с третьего варианта, который интересен предпринимателям. В странах, где государством установлен так называемый зеленый тариф, домовладелец может получать электричество из возобновляемых источников и отдавать в общую энергетическую сеть, получая прибыль. То есть, домовладелец приобретает те же 200–300 солнечных панелей, но продает энергию по хорошей цене, а не расходует почем зря.

    Большое количество батарей на крыше жилого дома не поместится, станцию большой мощности придется размещать на участке

    Например, в Украине зеленый тариф превышает обычный в 3 раза (по состоянию на июнь 2019 г.). Необходимо выдержать 1 условие: минимальная производительность СЭС – 30 кВт. Строите электростанцию, поставляете энергию в сеть, а сами покупаете втрое дешевле.

    Оставшиеся 2 варианта рассмотрим поподробнее.

    Отопление кондиционерами

    Способ основан на эффективности инверторных сплит-систем, доставляющих внутрь дома вчетверо больше тепла, чем затрачено электроэнергии. Как реализовать такое отопление:

    1. Первым делом максимально снижаем теплопотери здания – утепляем стены, полы и крышу, устанавливаем энергосберегающие окна. Идеальный показатель теплопотребления для жилища 100 м² – 6 кВт.
    2. Приобретаем 2 кондиционера с инверторными компрессорами, работающими при отрицательной уличной температуре. Суммарная производительность агрегатов должна равняться теплопотерям дома, в нашем случае – 6 кВт. Потребление таких «сплитов» не превысит 2 кВт.
    3. Монтируем солнечную станцию, способную круглосуточно обеспечивать электричеством кондиционеры.
    4. Для отопления в самые холодные сутки стоит установить любой традиционный источник тепла – котел, дровяную печь.

    Тепловые насосы Mitsubishi Zubadan расходуют энергии еще меньше, чем кондиционеры, а тепла приносят вчетверо больше (COP = 4)

    Видео в конце данного раздела подтверждает, что описанная схема вполне работоспособна. Один существенный минус: при отрицательной температуре эффективность кондиционеров резко снижается, без помощи котла не обойтись. В условиях умеренного и северного климата солнечные модули в одиночку не справятся.

    Примечание. Большинство инверторных сплит-систем способны функционировать при морозе до —15 °C. Коэффициент эффективности COP снижается до 1.5–2 (тепла выделяется вдвое больше, чем потребляется электричества).

    Использование местных обогревателей

    Речь идет о значительном удешевлении системы в случае использования неприхотливых потребителей – обычных тепловентиляторов. Ввиду отсутствия инвертора к солнечным модулям придется подключать 12-вольтовые обогреватели (можно взять автомобильный либо сделать своими руками).

    Читайте также:
    Японский стиль в интерьере - фото идеи, советы по оформлению

    Как собрать солнечный генератор электроэнергии:

    1. Устанавливаем нужное количество батарей с рабочим напряжением 12 вольт.
    2. Соединяем их проводами 2.5 мм² согласно приведенной ниже схеме – без инвертора.
    3. Подключаем нагрузку – маломощный тепловентилятор на 12 В.

    Ниже на видео специалист подробно описывает все нюансы такого подключения. Способ годится для обогрева отдельных комнат тепловентиляторами 1–1.5 кВт. Отопить весь дом сложнее – нужно собирать несколько отдельных контуров с солнечными панелями, чтобы не увеличивать сечение проводов.

    Заключительный вывод

    Сделать полноценное отопление частного дома на солнечных батареях очень непросто. Единственный более-менее реалистичный сценарий – это применение сплит-систем, а лучше – геотермального теплового насоса, мало зависящего от уличной температуры. Установка потребляет мало электричества, поэтому сможет работать от домашней СЭС.

    Мы специально исключили из статьи финансовые вопросы, поскольку речь шла о технических моментах. Но надо понимать, что оборудование солнечной энергетики – аккумуляторы, батареи, инверторы и блоки управления – стоят больших денег. Чтобы успешно решить задачу, нужно быть хорошо зарабатывающим энтузиастом.

    Схема с вакуумными коллекторами, подключенными к косвенному водонагревателю, обойдется дешевле. Но в данном варианте есть свои трудности, например, аккумулирование тепла и стагнация коллектора при жаре. В нелегком деле освоения солнечной энергии нет простых решений.

    Отопление частного дома солнечными батареями

    Ускоренное развитие альтернативной энергетики обычно связывают с заботой о состоянии окружающей среды. Однако у возобновляемых источников энергии – прежде всего таких, как солнечные электростанции – есть и другое важная роль. За пределами городов, особенно в местностях с нестабильной работой или отсутствием электросетей, теоретически возможно организовать даже отопление от солнечных батарей.

    Насколько реально отопление частного дома солнечными батареями?

    Такой способ отопления дорогой и неэффективный, для решения задачи потребуется отопительная система и автономный постоянный источник энергии для неё. В качестве первой можно использовать:

    • электрокотел и набор батарей с циркулирующей по замкнутому трубному контуру жидкостью (водой или специальным составом);
    • «теплые полы»;
    • классические навесные обогреватели;
    • инфракрасные настенные, напольные либо плинтусные керамические панели.

    Важно! Следует отметить, что для максимальной экономии наиболее эффективно применять метод независимой терморегуляции для каждого помещения отдельно.

    Солнечные батареи для отопления частного дома – расчет мощности потребления и сравнительная таблица.

    Рассмотрим относительно небольшой трехкомнатный частный дом площадью 85м2. Отапливать понадобится:

    • спальню и гостиную по 20м2 – 1,0 кВт на каждую;
    • детскую 15 м2 – 0,75 кВт; • кухню 10 м2 – 0,5 кВт;
    • коридор 10 м2 – 0,35 кВт;
    • ванную комнату и туалет 5+5м2 – 0,35 кВт.

    Итого: 1,0 + 1,0 + 0,75 + 0,5 + 0,35 + 0,35 = 3,95 кВт, или приблизительно 4 кВт.

    В зависимости от выбранного варианта отопительной системы суточная потребляемая мощность составит:

    Время работы в сутки (ч)
    Суточный расход энергии (кВт*ч)
    Электрокотел и водяной контур 14-16 56-64
    «Теплый пол» 12-14 48-52
    Тепловые конвекторы 12-14 48-52
    Керамические ИК – панели 7-10 32-40

    Отопление с помощью солнечных батарей – расчет требуемой мощности СЭС в зависимости от региона.

    Рассчитывая обеспечения такого количества энергии автономными солнечными станциями необходимо учесть, что генерация солнечных панелей минимальна именно в зимние месяцы. Для наглядности продемонстрируем помесячный график выработки станцией мощностью 1 кВт в большинстве регионов средней полосы России.

    График производительности солнечных батарей:

    По регионам России видим следующие данные по инсоляции— интенсивности облучения поверхностей солнечным светом (солнечной радиацией).

    Таким образом, примерно на 15-20% ниже генерация будет на северо-западе, на 15-20% выше – в южных регионах. Следовательно, даже при самом оптимальном варианте для отопления загородного дома средних размеров понадобится автономная станция мощностью от 30-40 кВт.

    Отопление солнечными батареями – оборудование и его стоимость.

    Для полностью независимой СЭС такой производительности потребуется закупить следующий комплект оборудования:

    Примерная комплектация автономной солнечной электростанции на 30 кВт, базовый вариант с качественным оборудованием.

    Оборудование, тип и количество
    Цена за единицу
    Сумма
    Солнечные панели: Delta BST 300-24M PERC (монокристаллические, Tier1) – 100 шт. 130$ 13000$
    Многофункциональный инвертор: Schneider Electric Conext XW+8548 – 1 шт. 3100$ 3100 $
    Панель управления: XW SCP – 1 шт. 350$ 350$
    Контроллер заряда: Schneider Electric XW MPPT 80-600 – 6шт. 1800$ 10800$
    Аккумуляторные батареи: DELTA GEL 12-200 – 24 шт. 460$ 11040$
    Кабель солнечный: “PV cable” 6 мм2 – 200 м. 1.1$ 220$
    Система защиты: автоматы защиты, плавкие вставки, УЗИПы, электрические щитки, кабели, периферия – 1 комплект. 800$ 800$

    ОБЩАЯ СУММА: 39310$

    В базовую комплектацию могут быть внесены изменения – например, выбраны более или менее мощные панели, оборудование других производителей и т.д. К стоимости комплекта солнечных батарей для отопления дома необходимо добавить расходы на монтажные и пуско-наладку, составляющие 10-15% от стоимости. Также стоит прибавить стоимость металлоконструкций для крепления солнечных батарей и стеллажи для АКБ. В итоге полностью автономная станция обойдется примерно в 45 000 долларов. Причем более трети расходов уйдет на накопители дневной генерации, для возможности обогрева частного дома и ночью.

    Место под солнечную электростанцию – как и где устанавливать?

    Если Вы твердо приняли решение приобрести СЭС такой мощности, необходимо будет выделить место для её установки. Для этого потребуется немалая площадь, поскольку каждая панель займет около 1,3-2м2 при установке «впритык» на кровле дома и на земле. Если приходится размещать модули в не только рядов на земле и плоской кровле (с минимальным уклоном), есть правило – при установке панелей под углом, между рядами панелей необходимо делать отступ, чтобы тень от передних рядов не падала на задние, в таком случае, необходимая площадь для установки будет больше в 2-5 раз. Длина отступа зависит от длины и угла наклона панелей.

    Сколько нужно солнечных батарей для отопления?

    Проведем расчет требуемого количества, а также пространства на установку СЭС на 30кВт, исходя из мощности выбранных панелей.

    Мощность панели, Ватт
    Количество панелей для СЭС 30кВт, шт.
    Монтаж впритык, м2
    Монтаж с отступом, м2
    200 150 200 400-1000
    250 120 200 400-1000
    300 100 160 320-800
    380 79 160 320-800
    450 67 150 300-750
    Читайте также:
    Чем можно отмыть пену монтажную?

    Очевидно, что даже для фотоэлектрических модулей на 450 Вт каждый, места на крыше с южной стороны, у типового дома, наверняка не хватит. Следовательно, панели можно будет установить только возле дома, на участке с минимальной площадью примерно от 150 квадратных метров.

    В этом случае основная конструкция примет примерно такой вид:

    Интеграция СЭС в общее электроснабжение дома и другие возможные варианты установок

    Но даже если купить солнечные батареи для отопления в таком количестве хватит денег, что делать с выработкой весной, летом и осенью? Ведь генерация СЭС на 30 кВт составляет в такие месяцы 100-180 кВт*ч в сутки, тогда как для полного потребления дома в это время достаточно 25 кВт*ч.

    Даже такой объем позволит снабжать энергией следующий примерный набор устройств:

    Электроприборы
    Мощность, Вт
    Количество
    Время применения (часов в сутки)
    Потребление (кВт*ч в сутки)
    Внутреннее и внешнее освещение 10 20 5 1
    Зарядки для телефонов 5 2 1 0,01
    Телевизоры 80 2 3 0,48
    Компьютеры и ноутбуки 150 2 12 3,6
    Фен 1000 1 0,5 0,5
    Холодильник 50 1 24 1,2
    Электрочайник 2000 1 0,2 0,4
    Микроволновая печка 800 1 0,3 0,24
    Электроплита 2000 1 3 6
    Электрокотел для подогрева воды 2500 1 2 5
    Кондиционер 800 1 3 2,4
    Стиральная машина 1500 1 2 3
    ИТОГО: 23,83

    Куда использовать остальные 40-100 кВт? И существует ли вариант «сброса» излишков в централизованную сеть? Рассмотрим эти вопросы подробно.

    Основным недостатком солнечной станции, установленной исключительно для автономного отопления дома солнечными батареями в зимний период, является её неэффективное использование. Ведь в остальное время года, когда ежемесячная генерация намного выше, будет много излишек электроэнергии. В этом нет ничего критичного для оборудования, оно само снизит генерацию и ничего с этим делать не нужно. Вопрос в другом, куда можно потратить эту лишнюю энергию во благо?

    Ситуацию могла бы исправить установка не полностью автономной, а гибридной или сетевой версии, при условии наличия стабильной центральной электросети. Но и это не панацея, ведь, при ныне действующем российском законодательстве, такие варианты не дадут быструю окупаемость.

    Более того мы рассчитали станцию на 30кВт, а продавать энергию в централизованную сеть на договорных условиях для частных станций мощностью более 15 кВт запрещено, нужно будет ограничивать продажу (в настройках системы) до 15кВт. Сетевая или гибридная модификация меньшей мощности может помочь решить вопрос, но излишки пришлось бы реализовывать по оптовой цене для региона – т.е. в среднем по 2 руб. за 1 кВт*ч. Учитывая стоимость оборудования, затраченную на СЭС для отопления солнечными батареями, подобный выход (при наличии стабильной центральной сети), финансово абсолютно нецелесообразен.

    Интеграция СЭС в существующие системы отопления

    Последний, вполне приемлемый вариант – использовать солнечные панели для обеспечения электроэнергией отдельных элементов уже существующих отопительных систем дома.

    1. Газовый и твердотопливный котлы. В таких отопительных системах необходимо снабжать электроэнергией только двухконтурный котел (или насос, если он технически не интегрирован в котел). Его потребление – не более 60-100 Вт/час, или 0,1 х 24 = 2,4 кВт*ч/сутки. В этом случае достаточно будет электростанции на 2,5-3 кВт, стоимостью не более $2500-3000 из 8-10 панелей, которые поместятся на любой крыше. А в летнее время года, такой системы будет достаточно чтобы снабжать электричеством весь дом. 2.
    2. Тепловые насосы. Следующий способ отопления солнечными батареями – обеспечить э/э тепловые насосы. Для частного дома площадью 80м2 расчет потребления электроэнергии при таком виде отопления довольно сложный и зависит от многих субъективных факторов. Для тепловых насосов необходимой мощности может понадобится СЭС мощнее, чем для газового отопления той же площади – на 5-8 кВт.

    Заключение

    Приведенные расчеты и соображения позволяют сделать следующие выводы.

    1. Установка для отопления в частном доме полностью автономной солнечной электростанции вполне возможна. Однако стоимость её составит около $ 45 000, а для размещения оборудования понадобится от 150 квадратных метров площади.
    2. Наиболее выгодным вариантом представляется интеграция «солнечного» отопления в общее энергоснабжение дома и/или вспомогательное снабжение энергией отдельных элементов уже существующие системы обогрева. Это позволит использовать станцию для отопления дома солнечными батареями максимально рационально. А заодно на порядок уменьшить её стоимость, мощность и площадь для монтажа.
    3. Главным преимуществом монтажа фотоэлектрической системы является е абсолютная независимость от внешних источников. Именно поэтому в отдаленных регионах России (например, Якутии) такие СЭС представляют собой не только выгодный, но и наиболее надежный способ получения электроэнергии.

    Солнечные батареи для отопления частного дома

    Владельцы загородных коттеджей нередко устанавливают солнечные батареи для отопления дома. Популярность такой конструкции легко объяснить: экономия на топливе и экологически чистая система жизнеобеспечения. При умелом использовании энергии солнца, ветра или воды вполне реально превратить небольшую дачную постройку в современное экожилище. Но для начала стоит разобраться, как это сделать и насколько такие батареи выгодны жильцам.

    • 1. Методы использования
    • 2. Плюсы и минусы
    • 3. Основные виды
    • 4. Установка системы

    Энергию солнечного света применяют уже давно и успешно, поэтому технология не является инновацией. Но пользуются такой услугой чаще всего жители жарких стран и южных широт, так как в теплых климатических условиях добывать такой альтернативный ресурс можно круглогодично. А вот северные регионы, где существует недостаток естественного излучения, используют солнечное отопление только как дополнительный вариант.

    Своеобразными посредниками между солнцем и механизмом, который образует энергию, являются солнечные батареи и специальные коллекторы. Притом эти элементы могут различаться как по назначению, так и по конструкции. Но суть их работы заключается в аккумулировании солнечной энергии для последующего использования.

    Батареи представлены в виде панелей, на одной стороне которых имеются фотоэлементы, а на другой — фиксирующий механизм. Такую конструкцию вполне реально смонтировать самостоятельно, но можно приобрести уже готовые изделия, продающиеся в широком ассортименте.

    Гелиосистема — прибор, который является частью системы отопления. Он представляет собой большой теплоизолированный короб, в который встроен теплоноситель. Такое устройство вместе с батареями закрепляют на приподнятом щите, обращенном к светилу. Разрешается также просто уложить обогревательные элементы на скате крыши.

    Можно значительно повысить эффективность отопительной системы, если поместить батареи на специальные динамические механизмы. Эти устройства работают по принципу системы слежения, то есть поворачиваются в ту сторону, куда направлены лучи солнца.

    Само преобразование осуществляется в трубах, которые расположены внутри коробки. Использовать солнечные батареи для отопления дома зимой вполне реально, но при условии, что солнечных дней в году будет не меньше двухсот.

    Читайте также:
    Требования СНиП: установка металлической двери в помещении

    Система, позволяющая обогреть дом солнечной энергией, имеет большое количество положительных качеств. Каждое из них довольно весомое, что позволяет жильцам экспериментировать. Главные достоинства батарей заключаются в следующем:

    1. 1. Экологичность. Установка абсолютно безопасна как для жильцов, так и для окружающей среды. Это связано с тем, что для обогрева дома солнечными батареями не используется традиционное топливо.
    2. 2. Автономность. Потребитель совершенно не зависит от цен на электроэнергию или экономической обстановки в стране.
    3. 3. Общедоступность. Чтобы установить систему в частном доме, не требуется никакой разрешительной документации от государственных инстанций.
    4. 4. Экономичность. При использовании коллекторов значительно снижаются затраты на горячее водоснабжение.

    Кроме положительных аспектов существуют и отрицательные моменты. Например, чтобы определить, насколько качественно и эффективно работает система, требуется длительное время (от 3 до 5 лет). В этот период энергии должно быть в достаточно и использовать ее необходимо в активном режиме. К минусам солнечных батарей можно также отнести следующие факторы:

    • высокая стоимость комплектующих деталей, необходимых для подключения и запуска конструкции;
    • количество произведенного тепла полностью зависит от географического положения и погодных условий;
    • жилье нуждается в резервном источнике (газовом или твердотопливном котле).

    Нужно учесть, что для эффективной работы необходимо постоянно следить за чистотой установки, удалять наледь с её поверхности, ремонтировать поломки. Если температурный режим в регионе часто опускается ниже 0 °C, то придется дополнительно утеплять и сам коллектор, и дом в целом.

    Стоит также учитывать, что подобные системы подходят не всем. Например, в регионах, где солнечные дни наблюдаются редко, конструкция вряд ли себя оправдает. Но, несмотря на высокую стоимость, пластины пользуются большой популярностью, поэтому все чаще их можно увидеть на дачных участках и крышах домов.

    Существует два типа батарей: малые и большие фотоэлектрические системы. К первому виду относятся аккумуляторные панели, которые функционируют от напряжения 12—24 В. С их помощью можно смотреть телевизор и включить несколько осветительных приборов.

    Большие установки способны обеспечить электроэнергией весь дом, а при необходимости и полностью обогреть его. Но это относится только к небольшим частным коттеджам, многоэтажные строения они отопить не смогут.

    Что касается комплектации, то она может различаться в зависимости от модели. Как правило, в базовый набор входят:

    • вакуумный солнечный коллектор;
    • специальный контроллер, следящий за эффективностью работы;
    • насос, при помощи которого подается теплоноситель;
    • бак объемом 500—1000 литров для горячей воды;
    • электрический ТЭН либо тепловой насос.

    Все эти детали необходимы для нормального функционирования системы. Как именно их монтировать и использовать, прописывается в инструкции, которая также входит в комплект.

    При оборудовании мощной системы отопления дома с помощью солнечных батарей можно дополнительно обеспечить жилище горячим водоснабжением, а также смонтировать теплый пол. Большая фотоэлектрическая установка вполне справится с этими функциями.

    Перед тем как устанавливать коллекторы, необходимо рассчитать, какая мощность им нужна, чтобы полностью удовлетворить все нужды. При расчете стоит учитывать площадь частного дома, количество проживающих людей, а также расход энергии. Например, для небольшой семьи из трех человек в среднем за месяц потребуется от 200 до 500 Вт/м².

    Если планируется обеспечить жилище горячей водой, то затраты на энергию увеличатся. Для эффективности можно сделать комбинированный вариант системы отопления. В таком случае домочадцы будут застрахованы и не останутся без отопления при аварийных и непредвиденных ситуациях.

    При выборе отопительной системы рекомендуется тщательно изучить ее особенности и возможности. Но сначала нужно рассчитать общую площадь дома и необходимое количество тепла, которое потребуется для его обогрева. Кроме этого, необходимо определиться с местоположением устройства. Но для этого лучше всего обратиться к специалистам, поскольку даже незначительное отклонение может заметно повлиять на ее эффективность. При выборе места нужно учитывать следующие нюансы:

    • конструкцию, которая обеспечивает солнечное отопление, необходимо расположить на южной стороне, так как именно там сосредотачивается наибольшее количество тепла;
    • крыша не должна быть в горизонтальном положении, а иметь небольшой уклон (примерно 45 градусов);
    • само устройство довольно габаритное и тяжелое, поэтому ему требуется прочная стропильная система;
    • деревья и здания, которые расположены вблизи коллекторов, не должны образовывать тень или закрывать солнце.

    Правильная установка значительно увеличивает эксплуатационный срок солнечных батарей. Система в таком случае прослужит около 25—30 лет и окупит себя уже на третий год использования, обеспечив владельцу дома независимость от коммунальных служб.

    Лучше всего выбрать для системы место, которое максимально освещается на протяжении всего дня. Если дом находится в плохом состоянии и на его крыше нельзя закрепить коллекторы, то можно выбрать другое здание.

    Что касается накопителя, то его можно расположить в подвале или на чердаке. Таких элементов может быть несколько, тогда они будут более компактны, а значит, и места занимать станут гораздо меньше.

    Приобретение солнечных батарей хоть и затратное мероприятие, но вполне оправданное. Ведь получаемая энергия бесплатная, а ее источник неиссякаем.

    Солнечное отопление частного дома своими руками

    Гелиосистемы экономически выгодны. Даже с учетом высокой стоимости, первоначальные затраты, при всесезонном применении окупятся за 2-3 года. Системы солнечного отопления частных домов не предназначены для автономной работы. Коллекторы компенсируют только часть необходимого для обогрева тепла, позволяя сэкономить за отопительный сезон до 300 м³ газа и до 4 м³ дров. Если использовать энергию Солнца только для отопления, окупаемость составит 6-7 лет.

    У альтернативного отопления частного загородного дома существуют свои недостатки и преимущества. Перед покупкой и подключением требуется изготовление грамотного проекта и проведение теплотехнических расчетов.

    Можно ли обогреть дом солнцем

    Несмотря на передовые технологии и инновации, до сих пор полноценное отопление гелиосистемами не представляется возможным. Причина проста. Солнце светит только днем. Ночью солнечное излучение отсутствует. Соответственно солнечные коллекторы для отопления будут работать исключительно в светлое время суток. Хотя в пасмурную погоду гелиопанели продолжат работать, теплоотдача существенно уменьшится.

    На теплоэффективность во многом влияет интенсивность ультрафиолетового излучения. В районах крайнего севера мощность и теплоотдача солнечного коллектора будет меньшей, чем в регионах с умеренным климатом.

    Отопление на солнечных батареях используется исключительно как дополнительный источник тепла. Принцип работы коллектора основан на преобразовании ультрафиолетового излучения в тепловую энергию.

    Получаемое тепло направляется в аккумулирующий бак, буферную емкость, установленную внутри здания. В воздушных системах жидкостный теплоноситель отсутствует. В помещение, при помощи вентиляторов нагнетаются разогретые воздушные массы.

    Если учесть, что эффективность гелиоколлекторов зимой существенно снижается, автономное отопление дома требует правильных расчетов. Специалисты рекомендуют на этапе планирования установить в здание источник тепла на традиционных энергоносителях (газ, дрова, пеллеты, уголь, дизтопливо, электричество), способный удовлетворить потребность здания в обогреве и ГВС на 100%. Гелиосистема будет использовать солнечную энергию и частично компенсировать затраты с разной эффективностью, в зависимости от месяца года.

    Читайте также:
    Соковыжималка для апельсинов

    Чтобы определить стоит ли устанавливать альтернативное отопление частного дома, стоит обратить внимание на существующие преимущества и недостатки солнечных коллекторов. При составлении таблицы плюсов и минусов, нужно учитывать реальные отзывы о гелиосистемах оставленные пользователями:

      Недостатки — главным минусом остается высокая стоимость (стоит отметить, что с появлением коллекторов российского производства, солнечные системы отопления стали экономически доступнее). Существует еще несколько минусов:

        сезонность — солнечные коллекторы с вакуумными термотрубками эффективны до температуры окружающей среды –50°С. Вакуумный гелиоколлекторы продолжат работать до тех пор, пока антифриз в теплообменнике не замерзнет. Солнечные панельные коллекторы работают при температуре до –25°С.

    зависимость от электричества — всесезонные системы работают с принудительной циркуляцией теплоносителя. При отключении напряжения теплоноситель может закипеть.

  • долгая окупаемость — в случае отопления, работа коллектора большую часть осуществляется при отрицательных температурах. Теплоэффективность гелиосистемы снижается. Время окупаемости увеличивается до 6-7 лет.
    • Преимущества — рекордно низкие температуры в средних широтах редки. На весь отопительный сезон приходится не более недельного периода, когда коллекторы перестают работать. При правильном подборе оборудования и расчетах удастся подобрать готовое решение, способное по максимуму компенсировать потребности жилого здания в тепле. Для средних широт компенсация энергозатрат достигает 20-30%. Дополнительные плюсы:

        срок эксплуатации от 30 до 50 лет;

    присутствует антивандальная и противоградовая защита;

  • гелиопанели выдерживают шквалы ветра.
  • Выше описаны общие преимущества и недостатки для любой системы отопления частного дома от солнечной энергии. У каждого типа гелиоколлекторов, воздушных и жидкостных, есть присущие им особенности, влияющие на окупаемость автономного обогрева.

    Виды отопления от солнца

    Существует несколько типов солнечных батарей. Главное отличие между гелиоколлекторами, используемый принцип работы. Типы солнечного отопления делятся на греющие воду или теплоноситель и нагревающие воздух.

    Принцип работы влияет на теплоэффективность, особенности эксплуатации и подключения. Гелиопанели отличаются внутренним устройством, обвязкой, функциональными возможностями.

    Отопление на водяных коллекторах

    В основе работы лежит принудительная циркуляция теплоносителя. Отопление частного дома солнечными панелями происходит в следующем порядке:

      абсорбер аккумулирует тепло;

    полученная тепловая энергия нагревает теплоноситель, циркулирующий в трубопроводе от гелиоколлектора до теплообменника бака накопителя;

    змеевик внутри бойлера косвенного нагрева отдает тепло окружающей жидкости;

  • происходит теплообмен, вода для бытовых нужд и отопления нагревается, остывший теплоноситель возвращается обратно к абсорберу.
  • В описанной схеме через буферную емкость закольцовано отопление и ГВС, и солнечный водонагреватель. Гелиоколлектор не сможет работать без накопительного бака. Для автоматизации отопления используется блок управления, регулирующий скорость циркуляции теплоносителя в зависимости от интенсивности нагрева.

    Обогрев осуществляется гелиосистемами двух типов. Каждая отличается особенностями эксплуатации и техническими характеристиками:

      Использование солнечных трубчатых коллекторов в системах отопления — оптимальный всесезонный вариант в условиях холодного климата, подходят для водяного радиаторного отопления и систем теплых полов, удовлетворения потребностей в ГВС. Теплопотери снижены за счет того, что теплопередающие элементы находятся в вакуумных трубках.
      Отопление дома солнечными вакуумными коллекторами зимой более эффективно, чем обогрев с использованием гелиопанелей. Внутри колбы коллектора, при условии отсутствия съема тепла, максимальная температура достигает 280-300°С, контролируемая модулем, предотвращающим закипание теплоносителя.

    Отопление частного дома солнечными панелями — решение больше подходит для средних и южных широт. В этих регионах гелиопанели быстрее окупаются и отличаются большей теплоэффективностью. Принцип нагрева идентичен вакуумным коллекторам, только вместо колб в солнечных нагревателях для нагрева воды используется панель. Абсорбирующая поверхность прогревает соприкасающуюся с ней медную или алюминиевую пластину. Тепло передается циркулирующей жидкости. Интенсивность нагрева теплоносителя существенно ниже, чем у вакуумных гелиоколлекторов.
    При помощи теплоаккумулятора, солнечные панели подключают к низкотемпературным системам отопления загородных домов (тёплым полам). Средняя температура нагрева 40-60°С. Для радиаторного обогрева «незакипающие» солнечные системы не подходят.

    Неотъемлемая часть гелиоколлекторов панельного и трубчатого типа — бойлер косвенного нагрева. Внутри емкости расположено два змеевика. Основной теплообменник подключен к котлу. Второй змеевик накопительного бака теплоаккумулятора предназначен для системы солнечного отопления.

    В БКН или теплоаккумуляторе используется принцип косвенного нагрева. Основной источник нагрева воды, находящейся в буферной емкости, это отопительный котел. Гелиоколлекторы дополняют определенный запас тепла. При достижении заданной температуры в баке подача теплоносителя на нагрев прекращается.

    Обогрев воздушными гелиосистемами

    Принцип работы отличается тем, что в качестве теплоносителя используется горячий воздух. Внутреннее устройство воздушного коллектора во многом напоминает гелиосистемы панельного типа. Исключение составляет то, что абсорбер не соединяется с контуром отопления. Фактически, это обычный воздухонагреватель или конвектор. Воздух в помещение направляется посредством вентиляторов и гофрированных каналов.

    Отопление в частном доме от воздушных коллекторов отличается быстрой окупаемостью и высокой теплоэффективностью. Единственный минус в том, что от системы воздухогрейного типа нельзя обеспечить потребности ГВС. Хотя существует несколько технических решений этого вопроса, но все они с низким КПД.

    Одна из современных разработок: дом с пассивным обогревом или «солнечная стена». Абсорбером в этом случае выступает наружная стена здания, защищенная от внешней среды стеклом. Стена в течение всего дня аккумулирует тепло и затем ночью отдает его в отапливаемые помещения. Смотрится такая гелиоустановка современно и отличается хорошей теплоотдачей.

    Тепловое аккумулирование используется не только для обогрева, но и охлаждения помещений. В летнее время года за счет солнечных батарей вентиляторы работают в режиме кондиционирования.

    Что эффективнее — воздушный коллектор или водяной

    Все зависит от того, какие цели ставит перед собой владелец частного дома. Сравнение солнечных водонагревателей с воздухогрейными конвекторами покажет следующее:

      Эффективность зимой — панельные и вакуумные гелиосистемы предназначены для нагрева воды ГВС и отопления. После наступления холодов теплоэффективность коллекторов падает.
      Панельные системы прекращают аккумуляцию тепла при –25°С. Трубчатые , хотя и с минимальной эффективностью, продолжают работать до –50°С.

    Воздушный коллектор в первую очередь предназначен для обогрева помещений. Зимой гелиосистема воздушного типа продолжает отапливать здание. Отсутствие жидкостного теплоносителя позволяет коллектору работать при любой температуре.

  • Стоимость — солнечные воздухогрейные гелиосистемы обходятся дешевле, установка не требует больших затрат и использования дополнительного дорогого оборудования. Трубчатые и панельные коллекторы стоят дорого. В обвязке используется накопительный бак, контроллер и другое дорогостоящее оборудование.
  • Эффективность солнечного воздушного отопления можно увидеть в том, что полная окупаемость наступает уже через 1-2 года эксплуатации. При этом коллекторы работают на отопление, кондиционирование и поддержание необходимого микроклимата в доме.

    Как сделать солнечный обогрев в своем доме

    Для начала следует учесть, что гелиосистема не устанавливается одна по себе. Для нормального обогрева здания потребуется ее одновременная работа с отопительным котлом.

    Необходимо изначально установить основной источник тепла — котел, из расчёта 100% покрытия всех теплозатрат здания. Только после этого приступают к расчету коллекторов.

    Расчет гелиосистемы

    Теплоотдача у водогрейных вакуумных и панельных коллекторов, а также воздухонагревателей, использующих энергию солнца разная. Соответственно нет единой системы расчетов. Для удобства можно воспользоваться специальными онлайн калькуляторами.

    Примеры самостоятельных расчетов:

      Воздушные гелиосистемы — дадут 1,5 кВт тепловой энергии на каждый 1 м² поверхности коллектора. Дом на 100 м² будет полноценно отапливаться при помощи 4 воздухонагревателей, общей площадью 8 м².

  • Вакуумный трубчатый коллектор — 15 трубок дадут в общей сложности 4,8 кВт/час. Для комфортного проживания одного человека потребуется от 2-4 кВт/час тепла. Дальнейшие расчеты выполняются по количеству проживающих в одном доме.
  • Таблица выбора бойлера косвенного нагрева и площади солнечного коллектора:

    Солнечные батареи для частного дома. Как выбрать? Что учесть? на сайте Недвио

    • Недвижимость
    • Строительство
    • Ремонт
    • Участок и Сад
    • О загородной жизни
    • Вопросы-Ответы
      • Интерактивная кадастровая карта
      • О проекте Недвио
      • Реклама на Nedvio.com

    Отопление домов и их электрификация за счет солнечной энергии с каждым годом становится все более популярной технологией в мире. Все потому что, во-первых солнечные лучи — это экологически чистый источник энергии, а во-вторых, солнце светит над нами каждый день — такое «природное топливо» для владельца дома бесплатно и неиссякаемо.

    Конечно, противники альтернативных источников нам тут сразу же возразят — все это не будет работать в России, солнечные панели и все подобное оборудование стоят дорого и никогда не окупятся. На самом деле это не совсем так. И в сегодняшней статье мы расскажем об особенностях солнечных батарей и о том, как их правильно выбрать, чтобы затея с таким отоплением получилась выгодной.

    Что можно получить от солнечных батарей?

    Обеспечить свой дом теплом и горячей водой бесплатно, только за счет солнечной энергии — сценарий возможный, однако нужно понимать, что это не круглогодичное решение.

    Дело в том, что на нашей широте наблюдается неравномерное распределение солнечного света в течение года. В России мы можем наслаждаться прекрасным солнцем только в течение нескольких летних месяцев. В свою очередь, с осени до начала весны лучам приходится пробиваться сквозь густые облака. Следовательно, использование солнечной энергии в этот период ограничено.

    По этой причине солнечные батареи могут полностью удовлетворить задачу обогрева дома только в летние месяцы. В оставшиеся месяцы они лишь незначительно будут поддерживать тепло в доме.

    В любом случае, установив такую систему на крыше, в течение 5-7 месяцев в году мы сможем бесплатно пользоваться горячей водой, что, безусловно, станет значительным облегчением для семейного бюджета, не говоря уже об охране окружающей среды.

    Как работают солнечные батареи для частного дома?

    Принцип работы солнечных батарей довольно прост. Солнце нагревается поглотителем в коллекторе, который поглощает солнечное излучение и преобразует его в тепло. В дальнейшем теплоноситель, нагретый в абсорбере (чаще всего вода или антифриз), попадает в бак технической воды и отдает тепло воде.

    На рынке представлены коллекторы двух типов: плоские и вакуумные. Первые выглядят как темная простыня. Сверху у них высокопрочное стекло, а с других сторон — изоляционная минеральная вата. Вакуумный коллектор, в свою очередь, состоит из вакуумных трубок, расположенных параллельно друг другу. Здесь поглотитель разделен на полосы, помещенные в трубы.

    Плоские модели стоят дешевле, но в холодные месяцы теряют много тепла. Вакуумные насосы лучше изолируют тепло, когда на улице холодно. Однако они более дорогие и более сложные. Тем не менее, именно они более популярны в России, поскольку за более высокую стоимость можно ожидать, что в неблагоприятных погодных условиях они будут давать больше тепла, чем плоские коллекторы.

    Кроме того, производители вакуумных коллекторов различают напорные и безнапорные модели. В первом случае вода в резервуаре находится под постоянным давлением. Благодаря этому давление горячей воды, подаваемой в краны, такое же, как и в системе водоснабжения, а коллектор может располагаться в любом солнечном месте. Напротив, в безнапорных коллекторах давление в баке отсутствует. Вода стекает из резервуара под действием силы тяжести. Такие коллекторы стоит размещать на крыше.

    Как выбрать солнечные батареи для частного дома?

    При выборе подходящих батарей учитывайте вместимость резервуара для воды. Слишком маленький бак не сможет летом получать все тепло от батарей. С другой стороны, в слишком большом баке вода никогда не будет достаточно горячей, и ее придется повторно нагревать.

    Для семьи из четырех человек мы рекомендуем использовать резервуары емкостью около 300 л. Для нагрева такого количества воды достаточно 2 или 3 коллектора площадью около 2 кв. м.

    Что касаемо выбора самих солнечных панелей, то их можно разделить на три категории по эффективности:

    • Высокоэффективные (SunPower);
    • Панели со средней эффективностью (REC, QCells, LONGi);
    • Бюджетные (полностью поликристаллические модели).

    Неэффективность панели вовсе не означает, что она не сможет вырабатывать энергию. Это значит ее более низкую мощность, то есть вам понадобится больше панелей, чтобы получить такой же эффект как у более мощных моделей.

    Следует знать, что с увеличением производительности качество изготовления (выражаемое, например, в сроках гарантии на продукт) также увеличивается, но и цена панелей также растет. Так как:

    1. Средние и неэффективные фотоэлементы используются в наземных установках, потому что это более выгодно, площадь поверхности не является таким ограничением, и если что-то сломается, то легко заменить;
    2. На крышах используются очень эффективные и качественные, среднеэффективные панели, потому что обычно ограничивается поверхность, установка каждой панели стоит дороже, а если что-то сломается, заменить сложнее.

    Однако все это лишь общие рекомендации, и все зависит от ситуации и затрат.

    Мощность панели определяет, сколько электроэнергии будет производить данная панель (в условиях тестирования), однако ее производительность (или, лучше сказать, эффективность) определяет степень, в которой данная панель преобразует солнечное излучение в электричество.

    Обратите внимание, мощность зависит от размера панели, а КПД — нет. Необходимо различать эти две концепции, чтобы можно было хорошо сравнить несколько панелей.

    Какие солнечные панели наиболее мощные, эффективные?

    Панели Bruk-bet имеют самую высокую мощность, но самую низкую эффективность. Преимущество в мощности просто связано с большим количеством ячеек.

    Очень хороши солнечные панели REC и Sharp, хотя первые больше по размерам и тяжелее. Размер панелей важен в том смысле, что пространство на крыше обычно ограничено.

    Что касаемо надежности. Солнечные батареи — это устройства, настолько простые по своей конструкции, что они не сломаются без внешнего вмешательства. Исключение составляют изделия, которые перестанут работать из-за производственных дефектов. Однако это, как правило, самые дешевые панели китайского производства.

    Тем не менее, товар может быть поврежден при транспортировке. С этой точки зрения важно кто продавец панелей, как выглядит гарантийное и послегарантийное обслуживание. Каждый производитель и каждый поставщик должен определять строгие условия гарантии, и они обычно схожи. Поэтому при покупке солнечных батарей следует обязательно обращать внимание на гарантию.

    Лучшие производители солнечных батарей для частного дома

    Обратите внимание на следующие бренды производителей солнечных панелей:

    • QCells;
    • REC;
    • Jinko;
    • LG Solar;
    • LONGi;
    • Panasonic;
    • Sunport;
    • Ja Solar;
    • Seraphim;
    • Sharp;
    • SunPower.

    Давайте теперь рассмотрим особенности лучших, на наш взгляд, моделей.

    Панели Saronic 300 Вт — точность и долговечность

    Первое предложение — это полноценная полнофункциональная фотоэлектрическая электростанция от немецкого производителя — Saronic. Эта компания сегодня является лидером в нише производства солнечных панелей. Продукция также имеет все сертификаты качества, в соответствии со стандартами системы менеджмента качества ISO 9001 и 140001.

    Солнечные панели Saronic можно легко адаптировать к потребностям любого частного дома после предварительного контакта с поставщиком. В исходный набор входят поликристаллические модули мощностью 280 Вт или 300 Вт, либо максимально мощные — в 360 Вт.

    Помимо панелей, в комплект входят:

    • 3-фазный инвертор Fronius и Huawei;
    • разрядники постоянного / переменного тока;
    • заземление установки и другие элементы защиты, необходимые для установки.

    Максимальная мощность этих панелей для частного дома составляет 300 Вт с допустимым положительным отклонением выходной мощности до 5%!

    Что это значит на практике? У каждой солнечной панели есть колебания производительности. Панели лучших производителей колеблются только в положительных значениях, что означает, например, что допуск мощности 5% означает, что вместо максимальных 300 Вт система может работать до 105% от значения мощности, то есть 315 Вт.

    Панели Sunpal 290W — низкая цена, устойчивость к плохим погодным условиям

    Вторыми в нашем списке являются панели для частного дома Sunpal. Они предназначены для менее требовательных к производительности домовладельцев, поскольку их пиковая мощность достигает 295 Вт.

    КПД модуля Sunpal составляет всего 18%, однако это компенсируется очень низкой ценой. Отдельную панель можно купить всего за 45.000 руб., что по сравнению с некоторыми предложениями на рынке составляет всего четверть цены!

    Солнечные панели MaySun Solar 315 Вт — идеально подходят для российского климата

    Это панели, импортированные непосредственно из Дубая из новейшей технологической линии Crystalline Silicon. Это обозначение свидетельствует о том, что они идеально адаптированы к климату России.

    Это оборудование достигает максимальной мощности 315 Вт. По заверениям производителя, благодаря закаленному, усиленному защитному стеклу, эти панели намного более устойчивы к любым погодным изменениям, таким как снег, дождь и даже град. Оборудование также более устойчиво к деформации, вызванной неожиданными перепадами температуры.

    КПД самого модуля в тестовых условиях составляет около 19%, при этом потери мощности после первого года оцениваются в 3%, а после двух — 0,7%, что является довольно значительной потерей по сравнению с конкурентами. Стоит отметить, что коэффициент полезного действия при температурах выше тестовых составляет менее -0,38%. А это значит, что эффективность оборудования не так сильно падает в жаркие дни, но этот коэффициент мог бы быть лучше.

    Одним из недостатков, которые мы видим в этой модели, является тот факт, что допуск выходной мощности составляет всего +3%, в то время как аналогичные модели в среднем дают +5% от значения. Однако мы считаем, что из-за стольких положительных сторон этих панелей это небольшое неудобство не должно повлиять на решение о покупке.

    Exiom — солнечные модули из Испании

    Монокристаллические фотоэлектрические модули мощностью 330-340 Вт, изготовленные по технологии PERC. В этой модели 60 ячеек размером 158,75 x 158,75 мм были соединены 5 шинами (токопроводящими дорожками).

    Качественное самоочищающееся стекло панелей Exiom идеально подходит для российских условий. Модули соответствуют рыночным стандартам по статической нагрузке и ударопрочности от града диаметром 25 мм. Гарантия на продукт составляет 20 лет, а гарантия на мощность — 30 лет.

    Seraphim Blade — солнечные модули из Китая

    Это монокристаллические фотоэлектрические модули мощностью 315 Вт, произведенные по технологии Full Blue или Full Black.

    Особенность этих панелей для выработки энергии от Солнца заключается в инновационной технологии половинной резки — когда стандартный фотоэлемент разрезается лазером на две части. Такое разделение повышает устойчивость к повреждениям и снижает негативное влияние частичного затемнения модуля.

    Гарантия на продукт составляет 10 лет, а гарантия на мощность — 25 лет (при снижении эффективности всего на 80,68%).

    Q-Cells Q-Peak G5.1 310 Mono 310W солнечные панели — современный дизайн, эффективность

    Оснащенные ячейками Q-ANTUM нового поколения, эти солнечные панели достигают эффективности до 310 Вт, что, несомненно, удовлетворит потребности любого небольшого загородного дома. Новая клеточная технология позволяет снизить производственные затраты.

    В солнечных установках Q-Cells и Q-Peak производитель сделал упор на довольно элегантный дизайн самого оборудования. Благодаря использованию черного цвета поверхности, панели не только не нарушат визуальную гармонию всего дома, но и смогут обогатить его своей футуристической, минималистичной и элегантной формой.

    Итак, как мы видим, солнечные панели — разумное вложение для владельцев частных домов. Даже в условиях российского климата. Даже в пасмурную погоду они дают значительную экономию на электричестве и независимость от поставщиков горячей воды.

    Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

    Солнечное отопление частного дома: варианты и схемы устройства

    Экология потребления.Усадьба:Большую часть года мы вынуждены тратить деньги на отопление своих домов. В такой ситуации любая помощь будет не лишней. Энергия солнца подходит для этих целей как нельзя лучше: абсолютно экологически чистая и бесплатная.

    Большую часть года мы вынуждены тратить деньги на отопление своих домов. В такой ситуации любая помощь будет не лишней. Энергия солнца подходит для этих целей как нельзя лучше: абсолютно экологически чистая и бесплатная. Современные технологии позволяют осуществлять солнечное отопление частного дома не только в южных районах, но и в условиях средней полосы.

    Что могут предложить современные технологии

    В среднем 1 м2 поверхности земли получает 161 Вт солнечной энергии в час. Разумеется, на экваторе этот показатель будет во много раз выше чем в Заполярье. Кроме того, плотность солнечного излучения зависит от времени года. В Московской области интенсивность солнечного излучения в декабре-январе отличается от мая-июля более чем в пять раз. Однако современные системы настолько эффективны, что способны работать практически всюду на земле.

    Задача использования энергии солнечной радиации с максимальным КПД решается двумя путями: прямой нагрев в тепловых коллекторах и солнечные фотоэлектрические батареи.

    Солнечные батареи вначале преобразуют энергию солнечных лучей в электричество, затем передают через специальную систему потребителям, например электрокотлу.

    Тепловые коллекторы нагреваясь под действием солнечных лучей нагревают теплоноситель систем отопления и горячего водоснабжения.

    Тепловые коллекторы бывают нескольких видов, в числе которых открытые и закрытые системы, плоские и сферические конструкции, полусферические коллекторы концентраторы и многие другие варианты.

    Тепловая энергия, полученная с солнечных коллекторов используется для нагревания горячей воды или теплоносителя системы отопления.

    Несмотря на явный прогресс в разработке решений по собиранию, аккумулированию и использованию солнечной энергии, существуют достоинства и недостатки.

    Плюсы и минусы от использования энергии солнца

    Самым очевидным плюсом использования энергии солнца является ее общедоступность. На самом деле даже в самую хмурую и облачную погоду солнечная энергия может быть собрана и использована.

    Второй плюс — это нулевые выбросы. По сути, это самый экологически чистый и естественный вид энергии. Солнечные батареи и коллекторы не производят шума. В большинстве случаев устанавливаются на крышах зданий, не занимая полезную площадь загородного участка.

    Недостатки, связанные с использованием энергии солнца, заключаются в непостоянстве освещенности. В темное время суток становится нечего собирать, ситуация усугубляется тем, что пик отопительного сезона приходится на самые короткие световые дни в году.

    Необходимо следить за оптической чистотой панелей, незначительное загрязнение резко снижает КПД.

    Кроме того, нельзя сказать, что эксплуатация системы на солнечной энергии обходится полностью бесплатно, существуют постоянные затраты на амортизацию оборудования, работу циркуляционного насоса и управляющей электроники.

    Открытые солнечные коллекторы

    Открытый солнечный коллектор представляет собой незащищенную от внешних воздействий систему трубок, по которым циркулирует нагреваемый непосредственно солнцем теплоноситель. В качестве теплоносителя применяется вода, газ, воздух, антифриз. Трубки либо закрепляются на несущей панели в виде змеевика, либо присоединяются параллельными рядами к выходному патрубку.

    У открытых коллекторов нет обычно никакой изоляции. Конструкция очень простая, поэтому имеет невысокую стоимость и часто изготавливается самостоятельно.

    Ввиду отсутствия изоляции практически не сохраняют полученную от солнца энергию, отличаются низким КПД. Применяются их преимущественно в летний период для подогрева воды в бассейнах или летних душевых. Устанавливаются в солнечных и теплых регионах, при небольших перепадах температуры окружающего воздуха и подогреваемой воды. Хорошо работают только в солнечную, безветренную погоду.

    Трубчатые солнечные коллекторы

    Трубчатые солнечные коллекторы собираются из отдельных трубок, по которым курсирует вода, газ или пар. Это одна из разновидностей гелиосистем открытого типа. Однако теплоноситель уже намного лучше защищен от внешнего негатива. Особенно в вакуумных установках, устроенных по принципу термосов.

    Каждая трубка подключается к системе отдельно, параллельно друг другу. При выходе из строя одной трубки ее легко поменять на новую. Вся конструкция может собираться непосредственно на кровле здания, что значительно облегчает монтаж.

    Веский плюс трубчатых солнечных коллекторов заключается в цилиндрической форме основных элементов, благодаря которым солнечное излучение улавливается круглый световой день без применения дорогостоящих систем слежения за передвижением светила.

    По конструкции трубок различают перьевые и коаксиальные солнечные коллекторы.

    Коаксиальная трубка представляет собой сосуд Дьаюра или всем знакомый термос. Изготовлены из двух колб между которыми откачан воздух. На внутреннюю поверхность внутренней колбы нанесено высокоселективное покрытие эффективно поглощающее солнечную энергию.

    Тепловая энергия от внутреннего селективного слоя передается тепловой трубке или внутреннему теплообменнику из алюминиевых пластин. На этом этапе происходят нежелательные теплопотери.

    Перьевая трубка представляет собой стеклянный цилиндр со вставленным внутрь перьевым абсорбером.

    Для хорошей теплоизоляции из трубки откачан воздух. Передача тепла от абсорбера происходит без потерь, поэтому КПД перьевых трубок выше.

    По способу передачи тепла есть две системы: прямоточные и с термотрубкой (heat pipe).

    Термотрубка представляет собой запаянную емкость с легкоиспаряющейся жидкостью.

    Внутри термотрубки находится легкоиспаряющаяся жидкость, которая воспринимает тепло от внутренней стенки колбы или от перьевого абсорбера. Под действием температуры жидкость закипает и в виде пара поднимается вверх. После того как тепло отдано теплоносителю отопления или горячего водоснабжения, пар конденсируется в жидкость и стекает вниз.

    В качестве легкоиспаряющейся жидкости часто применяется вода при низком давлении.

    В прямоточной системе используется U-образная трубка, по которой циркулирует вода или теплоноситель системы отопления.

    Одна половина U-образной трубки предназначена для холодного теплоносителя, вторая отводит нагретый. При нагреве теплоноситель расширяется и поступает в накопительный бак, обеспечивая естественную циркуляцию. Как и в случае систем с термотрубкой, минимальный угол наклона должен составлять не менее 20⁰.

    Прямоточные системы более эффективны так как сразу нагревают теплоноситель.

    Если системы солнечных коллекторов запланированы к использованию круглый год, то в них закачивается специальные антифризы.

    Плюсы и недостатки трубчатых коллекторов

    Применение трубчатых солнечных коллекторов имеет ряд достоинств и недостатков. Конструкция трубчатого солнечного коллектора состоит из одинаковых элементов, которые относительно легко заменить.

    • низкие теплопотери;
    • способность работать при температуре до -30⁰С;
    • эффективная производительность в течение всего светового дня;
    • хорошая работоспособность в областях с умеренным и холодным климатом;
    • низкая парусность, обоснованная способностью трубчатых систем пропускать сквозь себя воздушные массы;
    • возможность производства высокой температуры теплоносителя.

    Конструктивно трубчатая конструкция имеет ограниченную апертурную поверхность. Обладает следующими недостатками:

    • не способна к самоочистке от снега, льда, инея;
    • высокая стоимость.

    Несмотря на первоначально высокую стоимость, трубчатые коллекторы быстрее окупаются. Имеют большой срок эксплуатации.

    Плоские закрытые солнечные коллекторы

    Плоский коллектор состоит из алюминиевого каркаса, специального поглощающего слоя – абсорбера, прозрачного покрытия, трубопровода и утеплителя.

    В качестве абсорбера применяют зачерненную листовую медь, отличающуюся идеальной для создания гелиосистем теплопроводностью. При поглощении солнечной энергии абсорбером происходит передача полученной им солнечной энергии теплоносителю, циркулирующему по примыкающей к абсорберу системе трубок.

    С наружной стороны закрытая панель защищена прозрачным покрытием. Оно изготовлено из противоударного закаленного стекла, имеющего полосу пропускания 0,4-1,8мкм. На такой диапазон приходится максимум солнечного излучения. Противоударное стекло служит хорошей защитой от града. С тыльной стороны вся панель надежно утеплена.

    В перечне преимуществ закрытых плоских панелей числятся:

    • простота конструкции;
    • хорошая производительность в регионах с теплым климатом;
    • возможность установки под любым углом при наличии приспособлений для изменения угла наклона;
    • способность самоочищаться от снега и инея;
    • низкая цена.

    Плоские солнечные коллекторы особенно выгодны, если их применение запланировано еще на стадии проектирования. Срок службы у качественных изделий составляет 50 лет.

    К недостаткам можно отнести:

    • высокие теплопотери;
    • большой вес;
    • высокая парусность при расположении панелей под углом к горизонту;
    • ограничения в производительности при перепадах температуры более 40°С.

    Сфера применения закрытых коллекторов значительно шире, чем гелиоустановок открытого типа. Летом они способны полностью удовлетворить потребность в горячей воде. В прохладные дни, не включенные коммунальщиками в отопительный период, они могут поработать вместо газовых и электрообогревателей.

    Сравнение характеристик солнечных коллекторов

    Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.

    При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.

    Для солнечных коллекторов есть несколько важных характеристики:

    • коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
    • коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
    • общая и апертурная площадь;
    • КПД.

    Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.

    Способы подключения к системе отопления

    Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.

    Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.

    Схема подключении теплового коллектора

    В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:

    1. Летний вариант для горячего водоснабжения
    2. Зимний вариант для отопления и горячего водоснабжения

    Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.

    Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.

    Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор.

    Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.

    Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.

    По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.

    Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй — на трубе подачи горячего теплоносителя солнечного коллектора. Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе.

    В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.

    Схема подключения солнечной батареи

    Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.

    С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.

    Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.

    Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.

    Как посчитать необходимую мощность коллектора

    При расчете необходимой мощности солнечного коллектора очень часто ошибочно производят вычисления, исходя из поступающей солнечной энергии в самые холодные месяцы года.

    Дело в том, что в остальные месяцы года вся система будет постоянно перегреваться. Температура теплоносителя летом на выходе из солнечного коллектора может достигать 200°С при нагреве пара или газа, 120°С антифриза, 150°С воды. Если теплоноситель закипит, он частично испариться. В результате его придется заменить.

    Компании производители рекомендуют исходить из таких цифр:

    • обеспечение горячего водоснабжения не более 70%;
    • обеспечение отопительной системы не более 30%.

    Остальное необходимое тепло должно вырабатывать стандартное отопительное оборудование. Тем не менее при таких показателях в год экономится в среднем около 40% на отоплении и горячем водоснабжении.

    Мощность вырабатываемая одной трубкой вакуумной системы зависит от географического местоположения. Показатель солнечной энергии падающей в год на 1 м2 земли называется инсоляцией. Зная длину и диаметр трубки, можно высчитать апертуру – эффективную площадь поглощения. Остается применить коэффициенты абсорбции и эмиссии для вычисления мощности одной трубки в год.

    Стандартная длина трубки составляет 1800 мм, эффективная — 1600 мм. Диаметр 58 мм. Апертура – затененный участок создаваемый трубкой. Таким образом площадь прямоугольника тени составит:

    S = 1,6 * 0,058 = 0,0928м2

    КПД средней трубки составляет 80%, солнечная инсоляция для Москвы составляет около 1170 кВт*ч/м2 в год. Таким образом одна трубка выработает в год:

    W = 0,0928 * 1170 * 0,8 = 86,86кВт*ч

    Необходимо отметить, что это очень приблизительный расчет. Количество вырабатываемой энергии зависит от ориентирования установки, угла, среднегодовой температуры и т.д. опубликовано econet.ru

    Понравилась статья? Напишите свое мнение в комментариях.
    Подпишитесь на наш ФБ:

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: