Установка солнечных батарей своими руками. Солнце как источник бесплатной энергии: делаем солнечную батарею своими руками

Как сделать солнечную батарею: 5 лучших мастер-классов

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Читайте также:
Фундамент для кирпичного дома - небольшие хитрости и советы

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Как сделать солнечную батарею своими руками?

Многие компании в интернете реализуют уже готовые собранные панели, которые напрямую подключаются к потребителю. Но, такие устройства имеют куда большую стоимость, чем отдельные элементы. В связи с особенностью климатического пояса полностью перейти на солнечную электроэнергию у вас вряд ли получится, поэтому и готовые солнечные батареи смогут окупиться только через 10 — 40 лет. Чтобы сэкономить на дорогостоящих заводских панелях, куда выгоднее приобрести фотоэлектрические модули, комплектующие к ним и заняться сборкой ячеек в единую солнечную батарею самостоятельно.

Какой вариант выбрать?

Первое, что вам нужно – приобрести фотоэлектрический преобразователь. Различные модели предлагаются как отечественными производителями, так и зарубежными. Наиболее дешевыми вариантами являются китайские кремниевые фотоэлементы. Они имеют ряд недостатков, но, в сравнении с американскими и отечественными, куда более дешевые. Все модели, в зависимости от типа, подразделяются на три вида:

  • монокристаллические модули – состоят из искусственно выращенных кристаллов достаточно больших размеров. Отличаются самым высоким КПД в 13 – 26% и самым длительным сроком эксплуатации в 25 лет. Недостатком солнечных батарей на их основе является снижение максимального КПД в течении периода эксплуатации.
  • поликристаллические фотоэлементы – в сравнении с предыдущими имеют куда меньший срок эксплуатации, как заявляет производитель – 10 лет. Также они могут выдать только 10 – 12% КПД, в с равнении с предыдущими, зато этот параметр остается постоянным для них в течении всего периода работы.
  • аморфные батареи – это пленочные батареи, в которых на гибкую основу нанесен аморфный кремний. Такие фотоэлементы появились сравнительно недавно и могут наклеиваться на любые поверхности – окна, стены и т.д. Они характеризуются самым низким КПД – 5 – 6%.

Выбор определенного типа зависит от ваших пожеланий и поставленных задач. К примеру, если количество солнечного излучения сравнительно невелико в вашем регионе, лучше устанавливать монокристаллические преобразователи, так как у них самый высокий КПД.

Подготовка инструментов и выбор материалов

Помимо преобразователей, для сборки полноценной солнечной панели вам понадобятся такие материалы:

  • Припой – для солнечной батареи необходимы легкоплавкие оловянные сплавы.
  • Соединительные провода – подбираются однопроволочные медные марки. Для соединения монокристаллических и поликристаллических пластин применяются голые проводники, а для отвода электроэнергии изолированные.
  • Рамка – создает основной каркас, в котором располагается вся солнечная батарея. Состоит из основания – ДСП, USB, фанеры и прочих, металлических или деревянных планок, уголков и саморезов для их соединения.
  • Стекло или полимерная пластина – создают защитный слой поверх монокристаллических пластин, также, в сочетании с рамой, служат для скрытия элементов от воздействия атмосферных осадков и механических воздействий.
  • Герметик – наилучшим материалом для герметизации является эпоксидный компаунд, но это достаточно дорогостоящее удовольствие, поэтому его можно заменить силиконовым герметиком.
  • Аккумуляторная батарея – предназначена для накопления электрической энергии в светлое время суток с целью дальнейшего использования. Экономить при выборе батареи не стоит, так как качественная модель прослужит гораздо дольше.
  • Инвертор – используется для преобразования постоянного напряжения в переменное. Преобразователь напряжения необходим для подключения к солнечной батареи любых бытовых приборов.
Читайте также:
Стены зданий: утепление, покраска, укладка кирпича

Из инструментов вам пригодиться ножовка, дрель, шуруповерт или обычная отвертка для закручивания саморезов, мультиметр или амперметр для определения работоспособности солнечной батареи, паяльник.

Составление проекта

На этапе подготовки проекта необходимо определить наиболее подходящее место для установки солнечной батареи. Определите, с какой стороны участка находиться больше всего солнечных лучей, не падает тень от деревьев и других построек. Место установки может быть на земле, скатах крыши, стенах или отдельно стоящих конструкциях. К примеру, если вы хотите установить солнечную батарею на крыше, следует убедиться, что конструкция выдержит ее вес.

Из-за того, что максимальная производительность моно- и поликристаллических ячеек обеспечивается исключительно при перпендикулярном попадании на них солнечных лучей, желательно собрать для них регулируемую конструкцию. Которая позволит изменять угол наклона солнечной батареи, в зависимости от времени года или даже времени суток. Так как положение источника света в различные периоды года и суток значительно отличаются (рисунок 1).

Рис. 1: зависимость положения солнца от времени года

Также обратите внимание, что в стационарно установленной батарее, к примеру, вырабатывающая в идеальных условиях 7 кВт/ч, утром и вечером будет вырабатыватся только 3 кВт/ч. Соответственно, при установке только в одном положении, батарея будет выдавать номинальную мощность лишь несколько месяцев в году. Если вы решите монтировать ее в стационарном положении, панели следует располагать под углом от 50 до 60º, для регулируемых устанавливается два предела – зимний в 70º и летний в 30º, а в промежуточный период, их наклоняют как стационарные.

Чтобы определить количество пластин, необходимо подсчитать, какой электрический ток или мощность генерирует одна из них или 1 м 2 . Как правило, 1 м 2 выдает порядка 125 Вт, поэтому чтобы получить около 2,5 кВт для бытовых нужд, необходимо установить 20 м 2 панелей.

Порядок изготовления солнечной батареи

Элементы на поли- или монокристаллическом кремнии необходимо объединить в единую панель. Для этого осуществляется пайка контактов к проводникам. Порядок пайки следующий:

  • Оголенные проводники нарежьте одинаковыми отрезками под лекало, такой длины, чтобы она в два раза превышала размер элемента солнечной батареи. Рисунок 2: отмерьте проводники с помощью лекала
  • Выложите модули на ровную поверхность (секло, лист фанеры, стол и т.д.).
  • Очистите электрические контакты и полудите оловом, накладывать большое количество припоя сюда не нужно, достаточно слегка покрыть контакт. Рисунок 3: полудите контакты
  • Припаяйте заранее полуженные проводники к контактам, обратите внимание, что сильно придавливать пластины нельзя, так как они очень хрупкие. Рисунок 4: припаяйте провод к элементу
  • Замерьте ток от одного элемента с проводниками, это поможет подсчитать суммарную величину для всей батареи.

Если приобретенные вами элементы для солнечных батарей уже оснащены соединительными проводниками, этот этап можно пропустить и сразу переходить к изготовлению рамки.

Изготовление рамки

Рамка солнечной батареи представляет собой короб с невысокими бортами, который накрывается прозрачным стеклом. Для изготовления рамки:

  • Возьмите прямоугольный лист фанеры или ДСП такого размера, чтобы на нем могло располагаться нужное количество элементов. Просверлите в нем небольшие отверстия на расстоянии 10 см друг от друга для вентиляции. Рис. 5: просверлите отверстия для вентиляции
  • Приклейте по краю листа деревянные планки высотой не более 2 см, чтобы они не отбрасывали тень на солнечные приемники. Дополнительно прикрутите планки небольшими шурупами.
  • Вырежьте крышку из стекла или прозрачного полимера. Ее размеры должны соответствовать нижнему листу или быть меньше, в зависимости от того, поддается она сверлению или нет. Если крышку можно прикрутит шурупом, то размер может быть идентичен, если стекло может лопнуть при попытке сверления, сделайте его меньше на 0,5 – 1 см. Рис. 6: заготовьте крышку из стекла
  • Изготовьте из алюминиевого уголка прижимной каркас для верхней прозрачной крышки солнечной батареи, но пока ничего не прижимайте.

Рис. 7. соберите солнечную батарею

Постарайтесь подобрать материал для прозрачной крышки без бликов, иначе часть энергии солнца будет отражаться, что значительно снизит КПД. После того, как изготовите рамку, соберите солнечную батарею.

Изготовление модулей

Данный этап требует особой осторожности и внимания, поскольку на нем вы формируете электрическую цепь солнечной батареи. Если допустите прожоги или трещины, вы можете испортить не только какой-либо конкретный элемент, но и весь модуль, который в итоге придется переделывать.

  • Разместите солнечные коллекторы лицевой стороной на прозрачной крышке. Оптимально между элементами должно быть 3 – 5 мм, если этого трудно добиться с первого раза, можете сделать разметку на стекле. Рис. 8: разместите элементы
  • Аккуратно спаяйте выводы от каждого элемента «+» к «+», и «–» к «–». Плюсовые контакты должны располагаться на лицевой стороне, а минусовые на внутренней. Рис. 9: спаяйте выводы элементов

Все элементы соединяются последовательно сверху вниз, чтобы не раздавить нижние, когда будете паять. Вертикальные ряды припаяйте на общую шину.

  • Приклейте фотоэлементы к прозрачной крышке, для этого нанесите в центр элемента немного герметика и аккуратно придавите его. Следите, чтобы он располагался строго по разметке, рабочей поверхностью к стеклу, иначе переклеить потом будет проблематично. Рис. 10: приклейте элементы к стеклу
  • Просверлите в рамке отверстия для вывода плюсовой и минусовой шины солнечной батареи. В цепь батареи включите контроллер заряда, который предотвратит разряд заряда аккумулятора на солнечную батарею в темное время суток. Для этого подберите такие характеристики диодов, которые обеспечат полную блокировку цепи от обратного тока.
  • Зафиксируйте выводы солнечной батареи в отверстиях при помощи герметика и поместите в рамку. Рисунок 11: зафиксируйте провода герметиком

После того, как вы собрали батарею, проверьте ее работоспособность. Вынесите ее под солнечные лучи и замерьте величину тока на выводах.

Рис. 12: вынесите на улицу и проверьте мультиметром

Сравните это значение с ранее замеренной величиной для одного элемента солнечной батареи. Чтобы проверить правильность, умножьте количество элементов на ток от одного, если прибор показал такое значение или близкое к нему, солнечная батарея собрана правильно и ее можно герметизировать.

Для герметизации используются компаунды или силиконовые герметики, которые подходят для температуры ниже нуля. Для этого солнечную батарею можно как заливать полностью, так и нанести герметик только между модулями.

Второй вариант более экономный, но первый обеспечит вам куда большую надежность и лучшую герметизацию. После герметизации сверху устанавливается умеренный пресс до полного застывания.

Рис. 14: установите умеренный пресс

Читайте также:
Шаберы слесарные: описание, свойства и вид инструмента, условия выбора краски для шабрения поверхности

До заливки вы можете установить демпфер из плотного поролона между фотоэлементами солнечной батареи и плитой из ДСП. Ширина поролона выбирается менее высоты борта, в рассматриваемом случае высота – 2 см, соответственно можно взять поролон 1,5 см в толщину. Готовые и проверенные батареи установите согласно составленного проекта и подключите к электрической сети дома через аккумулятор и инвертор.

Дешёвая энергия: солнечная батарея своими руками

Главная страница » Дешёвая энергия: солнечная батарея своими руками

Солнечная энергетика быстро набирает популярность в обществе. Процент интереса к солнечным панелям стремительно увеличивается за счёт владельцев загородных домов, коттеджей, вилл. Не остаются в стороне и владельцы дачных хозяйств, для кого дешёвая энергия солнца также необходима. Вариант — солнечная батарея, обещает существенное снижение расходов на содержание любой недвижимости. Счета на оплату за потребление электрической энергии традиционно входят в книгу рекордов Гиннеса. А тут — электрический ток практически даром. Так ли это в действительности? Рассмотрим тему.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Эффективность солнечных батарей

Достичь высокой степени эффективности от использования солнечной батареи крайне проблематично. Тем более, когда солнечная батарея изготавливается своими руками, и делаются попытки получить энергию под бытовые нужды целого дома или хозяйственные нужды дачного участки.

Такая промышленная бытовая установка генерирует 150 ватт мощности при напряжении сети 12 вольт. Правда, заявленная мощность гарантируется при полностью открытом солнечном небосводе

Чтобы получать максимальную эффективность от солнечного генератора энергии, необходимо постоянно определять и точно согласовывать сопротивление нагрузки.

Здесь без привлечения технологичных электронных устройств – контроллеров управления, не обойтись никак. А сделать подобный контроллер своими руками – задача сложная.

Фотоэлементам, на основе которых выстраивается структура солнечных панелей, присуща температурная нестабильность. Практика применения указывает на значительное падение производительности фотоэлементов в результате повышения температуры их поверхности.

Так появляется ещё одна, не менее трудная задача. Её решение требует использования солнечного света, лишённого тепла. Сделать нечто подобное в кустарных условиях видится бесперспективной идеей.

И ещё недостатки альтернативной энергетики:

  • потребность в значительных площадях под размещение панелей батареи;
  • бездействие установки в тёмное время суток;
  • наличие в составе компонентов батареи ядовитых веществ (свинца, галлия, мышьяка и т.п.);
  • значительные эксплуатационные издержки.

Тем не менее, профессиональное изготовление солнечных генераторов энергии стабильно наращивается. Существует уже как минимум пять компаний, готовых предложить к установке современные конструкции, в том числе предназначенные для объектов жилой недвижимости:

  • Canadian Solar
  • Jinko Solar
  • Hanwha Qcells
  • JA Solar
  • Trina Solar

Солнечная энергия в доме своими руками

Самостоятельное изготовление батареи на базе солнечных панелей, пригодной для нужд частного хозяйства, видится реальным делом только в рамках скромных проектов.

Батарея солнечная, собранная самостоятельно из кремниевых пластин, разложенная под прямыми лучами солнца, готова к тестированию на присутствие напряжения

К примеру, изготовление солнечной батареи своими руками для подзарядки небольшого аккумулятора, энергия которого используется для питания двух-трёх маломощных (6 – 12 вольтовых) фонарей.

По таким проектам делаются установки, вырабатывающие напряжение не выше 20 вольт при токе не более 1 А. Рассмотрим один из возможных вариантов создания солнечной батареи с похожими рабочими характеристиками.

Для реализации проекта потребуются:

  1. Пластины кремниевых фотоэлементов.
  2. Паяльник электрический.
  3. Олово паяльное.
  4. Этиловый спирт.
  5. Канифоль сосновая для пайки.
  6. Инструмент электро-монтажника.
  7. Вспомогательные электронные компоненты и модули.

Подготовленные детали под сборку домашней (дачной) солнечной панели. Каждый из элементов является индивидуальным источником энергии. Их нужно объединить

Пластины фотоэлементов (кремниевых) проще всего приобрести уже готовые. Вполне пригодные конструкции разных размеров продаются по доступной цене. Также доступны предложения на отечественном Маркете:

Инструмент электро-монтажника, у человека знакомого с электроникой, как правило, имеется по умолчанию. Из вспомогательной аппаратуры потребуется регулятор заряда аккумулятора, инвертор.

Сборка солнечной батареи: пошаговая инструкция

Пошаговая сборка генератора на солнечных панелях выглядит примерно следующим образом:

  1. Пайка отдельных пластин с фотоэлементами в единую солнечную батарею.
  2. Проверка работы собранной батареи измерительным прибором.
  3. Укладка панелей внутрь защитной конструкции.
  4. Подключение собранной батареи через контроллер заряда к АКБ.
  5. Преобразование энергии АКБ в требуемое напряжение.

Спайка отдельных панелей в единую батарею – работа кропотливая, требующая навыков пайки и внимания. Сложность действий для сборщика обусловлена здесь хрупкой конструкцией кремниевых пластин.

Пайку на пластинах выполняют аккуратно паяльником подходящей мощности, предварительно заточив жало под угол 45 градусов, используя качественный припой

Соединять пластины одну с другой рекомендуется плоскими ленточными проводниками. Цель – минимизировать, насколько это возможно, сопротивление проводников. Места пайки следует предварительно обрабатывать этиловым спиртом. Паять рекомендуется с минимальным использованием канифоли и олова.

Завершив спайку, нужно проверить конструкцию на работоспособность. Делается эта процедура обычным образом, с помощью измерительного прибора – тестера (стрелочного, электронного).

Проверка работоспособности солнечной батареи, сделанной своими руками с помощью обычного цифрового прибора для измерения напряжения, тока, сопротивления

На выходных проводниках замеряют выходное напряжение и ток в условиях максимальной и минимальной освещённости полотна. При качественной спайке всех пластин и без наличия дефектов, результат получается, как правило, положительный.

Контроллер заряда аккумулятора

Энергетическая солнечная установка станет надёжнее и безопаснее, если в состав её схемы включить контроллер заряда (разряда) аккумулятора. Этот прибор можно купить уже в готовом виде.

Но если имеются способности в области электроники и желания к совершенству, контроллер заряда нетрудно сделать своими руками. Для справки можно уточнить: разработаны два вида таких приборов:

  1. PWM (Pulse Width Modulation).
  2. MPPT (Maximum Power Point Tracking).

Если перевести на русский язык, первый вид устройств действует на принципах широтно-импульсной модуляции. Второй вид приборов создан под вычисление так называемой максимальной точки мощности.

Читайте также:
Характеристики стеклопластиковой арматуры

В любом случае, обе схемы собраны на классической элементной базе, с той лишь разницей, что вторые устройства отличаются более сложными схемными решениями. В систему контроллеры заряда включаются так:

Классическая структурная схема включения контроллера заряда: 1 — солнечная панель; 2 — контроллер заряда/разряда АКБ; 3 — аккумулятор; 4 — инвертор напряжения 12/220В; 5 — нагрузочная лампа

Главная задача контроллера заряда АКБ энергетической солнечной установки – отслеживание уровня напряжения на клеммах аккумуляторной батареи. Недопущение выхода напряжения за границы, когда нарушаются условия эксплуатации АКБ.

Благодаря присутствию контроллера, остаётся стабильным срок службы аккумуляторной батареи. Конечно же, помимо этого прибор контролирует температурные и другие параметры, обеспечивая безопасность работы АКБ и всей системы.

Для сборки контроллера MPPT своими руками можно взять массу схемных решений. В поиске схемотехники проблем нет, стоит только сделать соответствующий запрос в поисковой системе. Например, собрать контроллер можно на основе такой вот, несложной на первый взгляд, структурной схемы:

На основе этой структурной схемы собирается достаточно эффективное и надёжное устройство контроля заряда АКБ по типу MPPT технологии

Однако для бытовых целей вполне достаточно простейшего ШИМ-контроллера, так как в составе бытовых энергоустановок, как правило, не используются массивные солнечные панели. Для контроллеров же типа MPPT, характерной особенностью является именно работа с панелями большой мощности.

На малых мощностях они не оправдывают их схемной сложности. Для пользователя приобретение таких приборов оборачивается лишними расходами. Поэтому логично рекомендовать для дома простой PWM аппарат, собранный своими руками, к примеру, по этой схеме:

Принципиальная схема простого ШИМ-контроллера для домашней солнечной установки. Работает с выходным напряжением панели 17 вольт и обычным автомобильным аккумулятором

Солнечная батарея: схема инвертора

Полученную от солнца энергию аккумулируют. В домашних условиях для накопления энергии обычно используется стандартная автомобильная батарея (или несколько батарей).

Напряжения и силы тока аккумулятора вполне достаточно для питания маломощных бытовых приборов, рассчитанных под напряжение 12 (24) вольт. Однако этот вариант устраивает далеко не всегда.

Поэтому дополнительно к собранной конструкции подключают инвертор – устройство, преобразующее напряжение аккумулятора в переменное напряжение 127/220 вольт, пригодное для питания бытовых приборов или хозяйственной техники.

Найти подходящую схему инвертора несложно. Есть множество идей на этот счёт. Традиционно схема инвертора включает следующие компоненты:

  • полупроводниковую солнечную панель,
  • интегральную микросхему типа SG3524 (регулятор заряда),
  • аккумуляторную батарею,
  • интегральную микросхему управления МОП-транзисторами,
  • силовые МОП-транзисторы,
  • трансформатор.

Структурная схема регулятора в паре с инвертором выглядит примерно так:

Структурная схема регулятора напряжения аккумуляторной батареи в ассоциации с инвертором-преобразователем напряжения для солнечной энергетической установки

Защитная конструкция солнечной панели

Собранную из хрупких кремниевых пластин солнечную батарею необходимо дополнительно защитить от внешнего воздействия. Защитный корпус делают на основе прозрачного материала, который легко поддаётся чистке.

Полиуретановые или алюминиевые уголки каркаса и прозрачное органическое стекло подойдут в самый раз. Разъяснять тонкости сборки защитного корпуса не имеет смысла. Это простейшая сборка, собранная своими руками при помощи набора бытовых инструментов.

Пример реализации домашней энергоустановки на видео

Представленное ниже виде демонстрирует существующие возможности сборки и эксплуатации домашнего энергетического источника от природы. Однако, как показывает практика, достичь с помощью самодельных устройств реально высоких мощностей в условиях бытовых — задача крайне затруднительная:

КРАТКИЙ БРИФИНГ

Z-Сила — публикации материалов интересных полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мульти-тематическая информация — СМИ .

Солнечная батарея своими руками из подручных средств

В целях экономии и заботе об окружающей среде, люди давно используют альтернативные источники энергии как солнечные аккумуляторы. Приобретение аппарата обойдется очень дорого, поэтому некоторые «умельцы» научились изготавливать солнечные батареи своими руками из подручных средств.

Устройство и принцип действия солнечных панелей

Приницп работы и устройство батареи заключается в нескольких параметрах, среди которые есть такие:

  • нескольких электронных приборов, которые преобразуют энергию фотонов в электрическую. Фотоэлектрические элементы, соединены в солнечных батареях в строгой последовательностью, расположены параллельно друг другу;
  • аккумулятора, который накапливает в себе электродвижущую силу;
  • генератора-преобразователя периодического напряжения;
  • электрического многопозиционного переключающего аппарата, контролирующего работу всех устройств в батарее.

Фотоэлектрические элементы для создания батарей изготавливаются из кремния. Однако очистка материала очень дорогая процедура. Поэтому в последнее время производители используют медь и индий. Каждый элемент представляет собой автономный бокс, генерирующий электроэнергию. Боксы соединены друг с другом, образуя единую площадку. От ее размеров зависит интенсивность солнечной батареи. Поэтому чем больше солнечная станция содержит фотоэлектрических элементов, тем больше производит энергии.

При попадании лучей солнца на элемент в нем образуется фотоэдс, создается тепловая генерация электронно-дырочных пар. Часть лишних электронов проходит через область соприкосновения двух полупроводников с разными типами проводимости из одного слоя в другой. После этого на внешнем участке электроцепи возникает напряжение. При этом на p-контакте возникает положительный полюс тока, на n-контакте – отрицательный. После подключения к аккумулятору фотоэлектрические элементы образуют замкнутое кольцо. В результате солнечная станция работает по принципу «белка в колесе». Стабильно отрицательно заряженные частицы «бегают» по кругу, а аккумулятор набирает заряд.

Стараясь найти замену дорогому кремнию, ученые-физики создали солнечные станции из органических соединений углерода и меди. Так, немецкий концерн Heliatek оснастил органическими солнечными коллекторами толщиной в 1 мм несколько зданий в Дрездене.

Классификация фотоэлектрических модулей

Солнечные электростанции различаются по интенсивности и принципу действия встроенных фотоэлектрических элементов. Некоторые модули значительно проигрывают в мощности, однако, меньше стоят. Отличаются методом изготовления из кремния деталей и бывают:

  • тонкопленочные, являющиеся недорогими и маломощными модулями. Ключевым компонентом в этой батарее является пленка, изготовленная из аморфного кремния. Она занимает большую площадь батареи, однако, энергию генерирует в малом количестве. При установке монтируется как на крышу, так и на любые поверхности;
  • полимерные, изготовленные их кремневодорода. Силан наносят на подложный изоляционный материал батареи. Кроме того полимерный элемент можно нанести на мягкую подложку, поэтому монтировать аморфную станцию можно на любой неровной поверхности;
  • монокристаллические, имеющие собственный надежный корпус, защищенный от попадания влаги и пыли. Благодаря одиночным кристаллам отличаются надежной генерацией энергии в течение большого промежутка времени. Стабильные в работе модули, которые чаще всего устанавливаются в России, Украине и Белоруси;
  • мультикристаллические, изготовленные из солнечных элементов со множеством разнонаправленных кристаллов. Меньше подвержены воздействию высокой и низкой температуры. Однако для генерации энергии этим батареям нужна большая площадь.

Собирают солнечные модули только из фотоэлектрических элементов одного размера. В противном случае максимальная мощность тока маленьких пластин будут ограничивать работу крупных.

Таблица КПД современных солнечных батарей

Степень соответствия удовлетворению потребностей при использовании солнечных модулей определяет отношение отдаваемой к подводимой мощности. Параметр включает в себя затраты на преобразование энергии, его средний показатель составляет 16-21 %. Именно такое количество электричества модуль получает от солнечных лучей, попадающих на фотоэлектрические элементы.

Читайте также:
Что дешевле колодец или скважина?

Все модели панелей имеют коэффициент полезного действия от 4,5 % до 26 %. Такая разница между преобразованием и передачей энергии обуславливается различием между материалами и конструкциями при изготовлении пластин. На характеристики в отношении передачи и преобразования солнечной энергии также влияет:

  • мощность излучения солнца. При понижении активности светила интенсивность панелей понижается. Чтобы модули снабжали владельцев электричеством ночью, в них интегрируют специальные аккумуляторы-накопители;
  • температура. Нагрев фотоэлектрических преобразователей снижает их способность превращать энергию в ток. Панели с встроенными охлаждающими приборами являются продуктивнее. Поэтому при температуре воздуха -15 градусов и солнечной погоде, КПД преобразователей выше, чем летом при температуре воздуха +28 — +32 градуса;
  • угол наклона панели. Для обеспечения максимально высокого КПД конструкцию панели нужно направить строго под попадание лучей солнца. Самыми производительные модели, уровень наклона которых регулируется относительно расположения светила;
  • климатические условия. На практике доказано, что у владельцев фотоэлектрических преобразователей, проживающих в регионах с пасмурной дождливой погодой, показатель КПД панелей ниже.

При изготовлении современных солнечных панелей, ученые-конструкторы из немецкого Института энергосистем Фраунгофера использовали технологию сращивания пластин, добившись рекордного КПД в 34, 8%.

Коэффициент полезного действия солнечных преобразователей во многом зависит от типа самородного элемента-кремния. Аппараты на основе этого материала отличаются методом изготовления и КПД.

Вид панели КПД Описание
Монокристаллические 15%-25% Аппараты, которые являются самыми производительными и долговечными. Из-за высокой структурированности материала имеют высокую цену.
Поликристаллические и полимерные 11%-19% Модули, которым для хорошей производительности нужна большая площадь, чем монокристаллическим. Имеют неоднородную внешнюю конструкцию, которую можно исправить при помощи просветляющих покрытий.
Тонкопленочные 5% -10% Аппараты отличаются простотой в изготовлении и низкой ценой. В процессе эксплуатации показатели КПД этих модулей снижаются.

Преимущества и недостатки природной энергии

Чем же так хороша природная энергия и что толкает на установку модулей не только частных лиц, но и владельцев крупных предприятий? Основными достоинствами солнечных преобразователей являются:

  • доступность источника электричества, которое обойдется пользователю бесплатно;
  • положительное влияние на сохранность окружающей среды;
  • долговечность приборов;
  • простой монтаж и принцип действия;
  • отсутствие проблем при повышении цен на коммунальные услуги.

Однако среди всех достоинств, панели имеют недостатки в виде:

  • очень большой стоимости;
  • приобретения повышенного количества фотоэлементов для удовлетворения потребностей большой семьи или помещения с площадью более 50 кв. м;
  • спада производительности при работе панели в пасмурную погоду.

Солнечная батарея своими руками

Затраты на изготовление самодельной солнечной батареи в несколько раз меньше, чем приобретение даже самой дешевой модели панели из Китая. Работает такая конструкция-самоделка не хуже, чем модуль, изготовленный на производстве.

Имея минимум знаний и умений, можно попытаться сделать солнечную батарею для дома или дачи своими руками. При этом фотоэлектрические элементы можно не покупать, а изготовить из имеющихся материалов. Мини-генераторы из диодов или старых транзисторов не будут обладать супермощностью. Однако благодаря самодельным коллекторам можно зарядить мобильный телефон или планшетник, подключить настольную лампу. Коллектор, изготовленный из старых алюминиевых банок при правильном размещении, поднимет температуру воздуха в двух-трех комнатах на 10-12 градусов.

В процессе пайки диодов не стоит спешить. Хрупкие тонкие элементы при резком движении могут поломаться.

Коллекторы из диодов

Кристаллы-полупроводники, заключенные в пластиковый корпус, концентрируют на себе солнечный свет. Под воздействием света на участке p-n-зоны начинают активное движение электроны, формирующие направленный поток, а после фототок. Благодаря этому можно создать мини-панель из светодиодов самостоятельно. Стоит знать, что вырабатываемая одним полупроводником мощность будет маленькая. Поэтому чтобы изготовить панель средней мощности нужно очень много светодиодов, которые нужно соединить в замкнутый круг. Для создания коллектора:

  • группу из светодиодов собрать на пластине из текстолита или листе плотного картона, соединив их медными проводами;
  • пластину с элементами поместить в прочную емкость с прозрачной крышкой;
  • выводы припаять к разъему, к которому подключать приборы.

Стоит знать, что выработка энергии самодельной панели из диодов возможна только под прямыми лучами солнца. Как только небольшое облако закроет светило, напряжение на выходе полупроводников будет равно нулю.

Коллекторы из транзисторов

У людей, которые увлекаются радиотехникой, накапливается много электронных запчастей. Среди них могут быть радиоэлектронные полупроводниковые триоды, выпущенные еще в Советском Союзе. Как детали они нигде не применяются из-за больших габаритов. Однако из этих старых транзисторов можно собрать миниатюрный фотоэлектрический элемент. Интенсивность такой батареи будет небольшой по отношению к ее габаритам, подойдет только для подключения к питанию маломощных аппаратов.

Для переделки полупроводникового триода в солнечную панель, нужно:

  • избавиться от верхней поверхности прибора, оставив неповрежденными кристалл и тонкие провода;
  • соединить элементы между собой медной проволокой на куске органического стекла или плотной бумаги;
  • для лучшего напряжения транзисторы соединить последовательно;
  • выводы припаять к разъему, к которому можно подключить для зарядки телефон, фонарик, нотбук;
  • после параллельного соединения полупроводников и попадания на них солнца, образуется ток.

Преобразователи из алюминиевых банок

Конструкция солнечного генератора из алюминиевого вторсырья представляет собой деревянный короб с изолированной задней поверхностью и прозрачной верхней крышки из оргстекла или поликарбоната. Внутри каркаса монтируются трубы, изготовленные из склеенных баночек, покрашенных черной матовой краской. По сделанным трубам прокачивается воздух, который поступает из нижней части пространства комнаты и в разогретом виде поднимается вверх.

В процессе происходит свободноконвективные движения воздуха и принудительная тяга. Мощная движущая сила толкает нагретый воздушный поток по вентиляционному каналу в комнату, где он замещает холодный воздух. Алюминий не подвержен коррозии даже при образовании внутри трубок коллектора конденсата. Кроме того, глянцевая внутренняя поверхность банок отражает тепло внутрь трубок и не выпускает наружу. Чтобы изготовить солнечный генератор из алюминиевых емкостей своими руками:

  • 200-250 банок из-под пива или напитков установить в деревянном коробе, склеив емкости при помощи термоустойчивого герметика;
  • в ящике сделать отверстия для входа-выхода воздуха;
  • банки и основание покрасить черной не глянцевой краской;
  • выкрашенные емкости накрыть оргстеклом или поликарбонатом, зафиксировав прозрачную поверхность алюминиевыми профилями;
  • установить на южную стену дома или квартиры.

Солнечный коллектор из кремниевых пластин или фотоэлементов

Полупроводниковые кремниевые вафли-фотоэлементы можно заказать в интернет-магазинах и сделать из деталей среднемощный солнечный коллектор. Под воздействием солнца электроны в таких полупроводниках отходят от ядер атомов в более высокие орбиты, создавая электрический ток. Для того чтобы собрать такой солнечный генератор:

  • очистить поверхности кремниевых спиртом;
  • при помощи мультиметра определить токопроводящую сторону пластины;
  • закрепив квадраты клейкой лентой, нанести раствор диоксида титана;
  • удалив ленту, поместить пластины на электрическую плиту, чтобы обжечь двуокись титана;
  • в емкости с водой развести сок вишни или сливы, поместить элемент на 15 минут;
  • пластины высушить, обтереть спиртом;
  • подготовить антибликовое или оргстекло;
  • при помощи паяльника мощностью не менее 60-80 Вт и проводников спаять детали на прозрачной поверхности последовательно сверху вниз;
  • спаянные фотоэлементы приклеить к стеклу термостойким герметиком;
  • контакты крайних кремниевых вафель вывести на шину с плюсом и минусом;
  • оснастить будущий коллектор блокирующим диодом, который в дальнейшем соединить с контактами;
  • из ДСП подготовить деревянный каркас, закрепить его по бокам алюминиевыми уголками, в нижней части через каждые 10 см проделать вентиляционные отверстия;
  • зафиксировать в коробе прозрачную поверхность с приклеенными кремниевыми вафлями, выведя контакты наружу;
  • установить солнечный аккумулятор рядом с источником света.
Читайте также:
Чем утеплить потолок в предбаннике

Лучше всего заказывать солнечные кремниевые пластины с диодами, шинами и плоскими тонкими проводниками. Такая покупка сохранит не только время, но и деньги на приобретение второстепенных запасных элементов.

Проект системы и выбор места

Схема системы сборки солнечного коллектора предусматривает расчеты нужного размера пластины. Кроме того по проекту коллектор устанавливается на фасаде, ориентированном в южную сторону. Допустимо отклонение на 35 градусов на восток.

Генератор устанавливается под определенным углом, который обеспечит максимальное попадание солнечных лучей на фотоэлектрические элементы. Место установки панели можно подобрать в любом месте: на земле, на крыше, на стене. Главное, разместить батарею на солнечной стороне так, чтобы она не затенялась деревьями или постройками.

При подборе угла наклона коллектора учитывать расположение постройки и время года. Желательно монтировать батарею так, чтобы величину угла можно было менять в зависимости от сезонных изменений, так как фотоэлементы эффективно работают только при перпендикулярном попадании лучей на поверхность.

Один квадратный метр самодельной батареи из кремниевых вафель выдает в процессе 100 Вт-120 Вт. Поэтому для обеспечения электроэнергией в 250 кВт-350 кВт панель должна иметь не менее двадцати квадратных метров площади.

Тестирование самодельной батареи перед герметизацией

До того как обеспечить коллектору полную герметичность, нужно протестировать аккумулятор при помощи амперметра. Кроме того, проверив заранее панель, можно устранить ошибки, которые возникают во время спаивания вафель.

Тестирование нужно провести в солнечный день в час-два дня. Для этого:

  • вынести генератор на улицу, установить под тем углом, который был определен заранее;
  • подсоединить к контактам электроизмерительный прибор, измерить ток короткого замыкания;

  • если солнечный коллектор правильно спаян и собран, мощность электрического тока должна составлять на 0, 5 – 1 ампер ниже, чем возрастающий электрический импульс ударного типа. Показания прибора должны быть не менее 4, 5 ампера;
  • самодельный генератор, изготовленный из кремниевых пластин-фотоэлементов, должен выдать параметры в 5-10 ампер.

Герметизация уложенных в корпус фотоэлементов

После тестирования кремниевых пластин можно проводить герметизацию. Для заделки швов и стыков использовать эпоксидную смолу или термоустойчивый герметик. Олигомер нанести на пространство между фотоэлементами и на крайние детали. Далее, сверху установить акриловое стекло, плотно прижав к кремниевым пластинам.

В качестве дополнительной защиты и меньшего изнашивания фотоэлементов, между поверхностью короба и кремниевыми элементами установить прокладку из минеральной ваты.

После установки акрилового стекла конструкцию уложить на твердую поверхность так, чтобы стенка короба из ДСП была вверху. Это необходимо для того, чтобы из батареи вышел воздух. После повторного тестирования коллектор установить на выбранный участок, подключить к системе дома или квартиры.

Загоревшись желанием создания солнечной стации своими руками, не стоит изготавливать огромный коллектор. Чтобы понять все нюансы работы, нужно собрать маленький генератор. Если после тестирования, прибор хорошо справится с задачей, приступать к созданию более мощной модели.

Солнечная батарея своими руками

Солнечные лучи, как альтернативный источник энергии, приобретают все более широкую популярность среди населения. Особенно это касается жителей частного сектора, постепенно избавляющихся от энергетической зависимости. Однако подобные системы еще довольно дороги и не все могут их приобрести. В таких ситуациях наилучшим выходом становится солнечная батарея изготовленная своим руками из подручных материалов.

  1. Выбор фотоэлементов
  2. Расчет и проектирование
  3. Формула для расчета
  4. Выбор места установки
  5. Подготовка материалов и инструмента
  6. Как собрать солнечную батарею своими руками
  7. Сборка корпуса солнечной батареи
  8. Пайка проводов и соединение фотоэлементов
  9. Нанесение герметизирующего слоя
  10. Окончательная сборка солнечной панели

Выбор фотоэлементов

Любая солнечная батарея для дома сделанная своими руками, будет в любом случае стоить значительно ниже, чем заводская. У известных производителей производится тщательный отбор фотоэлементов, в процессе которого отсеиваются заготовки, имеющие пониженные или нестабильные показатели. Поверхность готовых изделий покрывается специальным стеклом, снижающим отражение света, отсутствующим в свободной продаже. В производстве применяются многие другие методы исследования пластинок, совершенно не подходящие для домашних условий.

Однако, солнечная батарея своими руками вполне может быть изготовлена, а полученные самоделки обладают хорошей работоспособностью и не столь заметно отличаются от изделий промышленного производства. Зато экономия денежных средств получается практически в два раза, и в определенных условиях делать панели не только целесообразно, но и выгодно.

Следовательно, основная цель на стадии подготовки заключается в правильном выборе наиболее подходящих фотоэлементов. По техническим причинам пленочные или аморфные изделия можно сразу же исключить и остановиться на пластинках их кремниевых кристаллов. В самых первых домашних опытах рекомендуется воспользоваться более дешевыми элементами из поликристаллов и лишь потом переходить к работе с монокристаллическими кремниевыми материалами.

Приобрести фотоэлементы для солнечной батареи возможно на известных зарубежных торговых площадках, таких как Алиэкспресс, Амазон и других. Они находятся там в свободной продаже в виде отдельных пластинок с различной производительностью и габаритными размерами, что позволяет собрать солнечную панель требуемой мощности.

Кроме того, существуют бракованные изделия, относящиеся к так называемому классу В, имеющие различные повреждения в виде небольших сколов и трещин. На производительность это почти не влияет, зато их стоимость значительно ниже, поэтому они чаще всего используются в самодельных гелиосистемах.

Выбор пластинок прежде всего осуществляется по их внешнему виду. Монокристаллические элементы имеют однотонную поверхность темно-синего цвета, на которой расположена хорошо заметная электродная сетка. В поликристаллических пластинках поверхность покрыта более светлым узором, образованным многочисленными мелкими кристалликами. Подробнее чем отличаются монокристаллические панели от поликристаллических читайте здесь https://electric-220.ru/news/monokristallicheskie_i_polikristallicheskie_solnechnye_batarei/2018-12-26-1624

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Читайте также:
Утепление свайного фундамента: нужно ли, как закрыть, отделка

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м 2 .

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Выбор места установки

Производительность солнечных панелей во многом зависит от места их установки. Поэтому, перед тем как сделать солнечную батарею своими руками, нужно заранее определиться, где она будет расположена.

Одновременно, следует учитывать следующие факторы:

  • Степень затененности. Если вокруг панели находятся здания, заросли деревьев и прочие габаритные предметы, создающие тень, она не сможет нормально функционировать и вырабатывать достаточное количество электроэнергии. Кроме того, панель может очень быстро прийти в негодность, не оправдав расходы на ее изготовление.
  • Ориентирование панелей относительно солнца. Световой поток, создаваемый солнечными лучами, должен максимально захватывать поверхность фотоэлементов. Жители северного полушария направляют панель главной стороной на юг, а в южном полушарии ориентация выполняется строго на север.
  • Угол наклона. Также выбирается в зависимости от положения и местных координат и устанавливается в соответствии с широтой. Для расчетов угла установки панели в интернете существуют онлайн-калькуляторы, выдающие наиболее подходящий градус.
  • Наличие свободного доступа для чистки, ремонта и обслуживания. В процессе эксплуатации лицевая поверхность панели постепенно покрывается пылью, грязью, а зимой – снегом. В результате, ее эффективность заметно снижается. В некоторых случаях требуется полная замена солнечных батарей. Поскольку очистка будет выполняться самостоятельно, батарею желательно устанавливать в удобном и доступном для себя месте.

Подготовка материалов и инструмента

Прежде чем начинать изготовление солнечных батарей своими руками, необходимо заготовить все требующиеся материальные ресурсы и инструменты:

  • Пластинки фотоэлементов.
  • Диоды Шоттки для шунтирования фотоэлектрических элементов.
  • Специальные шины или многожильный медный провод для соединения модулей между собой.
  • Антибликовое стекло хорошего качества или плексиглас. Любые препятствия на пути солнечных лучей приводят к росту потерь энергии. Преломление света должно быть минимальным.
  • Все материалы, необходимые для пайки.
  • Фанера, рейки или алюминиевые уголки для сборки каркаса.
  • Силиконовый герметик.
  • Метизы, крепления.
  • Защитный состав или краска, чтобы обработать деревянные поверхности.
  • Обычные инструменты – отвертки, кисти малярные, стеклорез, паяльник, ножовки по дереву и металлу и другие приспособления для конкретной ситуации.

Самая первая солнечная батарея собранная своими руками из подручных материалов должна изготавливаться из пластинок, к которым уже припаяны выводы. За счет этого снижается риск их повреждений во время сборки. Если же имеется опыт работы с паяльником, то будет дешевле купить обычные фотоэлементы и самостоятельно припаять к ним провода. По результатам расчетов заранее известно, какие пластинки будут соединяться последовательно, а какие – параллельно. Лучше всего составить предварительную схему подключения или макет и по ней делать монтаж.

Размеры каркаса определяются в соответствии с размерами ячеек. Между каждым элементом оставляется тепловой зазор 3-5 мм, а сама рамка не должна перекрывать края элементов.

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.
Читайте также:
Холодная и газовая сварка в производстве

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Как сделать солнечную батарею своими руками

Солнечная батарея своими руками — пошаговая инструкция как изготовить и провести монтаж солнечной батареи в домашних условиях (фото и видео-инструкция)

Солнечная батарея в готовом для функционирования виде стоит недешево. Но ее можно соорудить своими руками. Подобные технологические новшества — отнюдь не редкость в нашем веке. Подобные устройства многим помогают в быту и жизни.

Так солнечные батареи на крыше дома делают электрическую энергию практически бесплатной. Отопление оранжерей, обеспечение работы отдельных бытовых приборов, обогрев и другие функции — сфера применения подобных конструкций.

С каждым годом они приобретают все большую популярность. Рассмотрим метод сборки электростанции своими силами.

Краткое содержимое статьи:

О солнечных батареях

Разобравшись, как сделать солнечные батареи своими руками, возможно малыми затратами соорудить собственную конструкцию. Она будет работать аналогично тем, производятся промышленностью. Это генератор, функционирующий за счет фотоэлектрического эффекта.

Для того, что бы узнать, как обустроить и установить оборудование на дачном участке, рекомендуем профильный портал — dachnichek.ru.

Гелеоэнергия преобразуется в электричество вследствие падения лучей на пластины, представляющие собой фотоэлементы — главные части конструкции.

Для примера, собранная система состоит из 36 пластин. Характеристики солнечных батарей для дома будут следующие: каждый элемент имеет размеры 8 на 15 см и выдает 2,1 Вт. Суммарная мощность устройства получится равной 76 Вт.

Принцип работы и конструкция

Кванты попадают на фотоэлементы, в результате чего с внешних орбит атомов вещества уходят электроны.

Становясь свободными, они создают ток, идущий через контролер к аккумулятору, где накапливается заряд. Затем энергия поступает потребителю — различным бытовым или техническим устройствам.

Комплект солнечной батареи для дома составляется из кремниевых фотоэлементов. Одна их сторон пластины имеет тонкий слой химически пассивного фосфора либо бора.

Электроны, возникая, сдерживаются этой пленкой. Поверхность элемента пересекается металлическими дорожками, где свободные частицы собираются, выстраиваются и движутся упорядоченно, создавая ток.

При большом числе фотоэлементов в комплекте батареи можно получить достаточно много электричества.

Верхний слой пластины снабжен противоотражающим слоем. Это увеличивает КПД.

Пластины фотоэлементов могут быть:

  • поликристаллические, с небольшим КПД около 12 %, но стабильно работающие до 10 лет;
  • монокристаллические, с КПД до 25 % и функционированием до 25 лет, но со снижением параметра эффективности во времени;
  • аморфные, КПД до 6 %, удобные для укладки.

Фотопреобразователи представляют собой модули всей конструкции, закрепляемой в профиле из алюминия.

Комплектация

Для сборки конструкции приготавливают следующий перечень материалов:

  • Фотоэлементы (пластины).
  • ДСП.
  • Углы и рейки из алюминия.
  • Поролон до 2,5 см, жесткий.
  • Прозрачное основание.
  • Крепеж (саморезы).
  • Герметик, предназначенный для внешнего применения.
  • Проводка.
  • Диоды Шоттки.
  • Клеммы.

Габариты батареи предопределяют количество всех нужных материалов. А это зависит от планируемого числа фотоэлементов.

Понадобятся следующие инструменты:

  • Шуруповерт или отвертки.
  • Ножовки для дерева и металла.
  • Паяльник.
  • Тестер для проверки параметров тока.

Фотоэлементы, не совпадающие по размеру, использовать крайне нежелательно. Ведь получаемый по максимуму ток ограничит наименьший из них. При этом мощность больших снижается.

Для сборки модулей воедино понадобятся шины. Подключение производится посредством клемм.

Каркас формируют из деревянных реек. Или же из алюминиевых уголков, отдавая им предпочтение по причинам легкости, надежности этого материала. Отсутствует коррозия, гниение, разбухание от влаги.

Потребуется также прозрачный элемент. От показателя преломления зависит КПД. Важна и способность поглощать ИК (инфракрасный) спектр.

Первый параметр наилучший у плексигласа и оргстекла. А также применяется поликарбонат, который несколько хуже.

Поглощение ИК изучения влияет на нагрев, а значит — на срок службы. Берется термопоглощающее оргстекло или обычное со специальной функцией (например, антибликовое).

Проектирование батареи и ее расположения

Солнечная система должна быть рассчитана перед сборкой по размеру, основу чего составляют габариты пластины.

Также необходимо предусмотреть угол наклона установки, при котором освещаемость панелей будет максимальной (обычно — 50 или 60 градусов).

Лучше, если эта величина будет переменной, но максимум панель получает при перпендикулярном падении лучей. По отношению к выбору места батареи располагают на земле, крышах. Крона деревьев не должна бросать тень, выбирается солнечная сторона.

Расчету также подлежат электрические параметры. Каждый метр может дать 120 Вт. Семья в среднем потребляет 300 кВт ежемесячно.

Для удовлетворения таких нужд потребуется примерно 20 кв. м. Но если цифра площади — всего 5 метров, дом получит значительную экономию.

Монтаж

Сборка состоит из следующих шагов.

В пластинах необходимо припаять контакты. Иногда элементы продаются вместе с металлическими проводниками, но в другом случае те и другие соединяют пайкой.

Приготавливают каркас под размещение фотопластин. Рамки складывают из алюминиевых уголков (70 или 90 мм) или реек. Внутри наносят герметик. Задний корпус выполняют из ДСП с бортами до 2 см высотой, привинченными саморезами.

Читайте также:
Фото штор с ламбрикеном в гостиной

При расчете размеров оставляют зазор для элементов до 5 мм. В корпусе делают отверстия для вентиляции, шаг 10 см. Прозрачный элемент вставляют в раму, прикрепляется метизами на углах и сторонах.

Нужно смонтировать элементы, разложив их поверхностью вниз на стекло. Делают пайку с «+» на лицевой и «-» на обратной стороне. Соединяют контакты. Припаивают рядами. Затем элементы надо приклеить, нанеся в середину каждого герметик.

Затем цепочки переворачиваются вверх лицом и располагаются по предварительной разметке. Немного прижимаем, выводим на шину контакты через каркасные отверстия. Устройству нужен также диод Шоттки для блокирования обратного тока.

Тестирование амперметром в ясную погоду, полдень. Прибор присоединяем к контактам, меряем ток короткого замыкания, норма силы которого — от 0,5 до 1 А. Максимальный показатель работы батареи — 10 А.

Работоспособные части, размещенные на подложке, переносят в корпус.

Изготовление солнечной батареи для дома своими руками

Основой солнечной батареи являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

  • Выбор комплектующих для изготовления ↓
  • Технология изготовления своими руками ↓
  • Сборка корпуса ↓
  • Соединение фотоэлементов ↓
  • Герметизация солнечной панели ↓
  • Финальная сборка солнечной батареи ↓
  • Преимущества и недостатки солнечной батареи ↓
  • Установка ↓
  • Схема электроснабжения дома ↓

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. Аккумулятор. Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер. Он следит за разрядкой и зарядкой аккумулятора.
  4. Инвертор. Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические. Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные. Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические. Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном солнечные панели на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • паяльник;
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса

Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов

Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Читайте также:
Чем утеплить потолок в предбаннике

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Герметизация солнечной панели

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз, допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть, пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи

  1. Сбоку корпуса установить соединительный разъем, разъем соединить с диодами Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать, например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи

У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания, нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка

Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

Несколько рекомендаций, которые помогут сберечь деньги и время при изготовлении солнечных панелей:

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом, велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются, следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон, на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником, и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки, деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома

Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей, которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки. Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения. Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы. Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик.

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: